dashboard | hierarchy | modlist | groups | tests | asserts

Module Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_0_cdc.u_arb

Instance :
SCORELINECONDTOGGLEFSMBRANCHASSERT
100.00 100.00 100.00


Instance's subtree :
SCORELINECONDTOGGLEFSMBRANCHASSERT
100.00 100.00 100.00 100.00 100.00


Parent :
SCORELINECONDTOGGLEFSMBRANCHASSERTNAME
98.08 100.00 92.31 100.00 100.00 u_wkup_detector_en_0_cdc


Subtrees :
NAMESCORELINECONDTOGGLEFSMBRANCHASSERT
gen_passthru.u_dst_to_src_ack 100.00 100.00 100.00 100.00 100.00


Module Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_1_cdc.u_arb

Instance :
SCORELINECONDTOGGLEFSMBRANCHASSERT
41.67 50.00 33.33


Instance's subtree :
SCORELINECONDTOGGLEFSMBRANCHASSERT
93.79 93.33 81.82 100.00 100.00


Parent :
SCORELINECONDTOGGLEFSMBRANCHASSERTNAME
93.88 90.91 84.62 100.00 100.00 u_wkup_detector_en_1_cdc


Subtrees :
NAMESCORELINECONDTOGGLEFSMBRANCHASSERT
gen_passthru.u_dst_to_src_ack 100.00 100.00 100.00 100.00 100.00


Module Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_2_cdc.u_arb

Instance :
SCORELINECONDTOGGLEFSMBRANCHASSERT
41.67 50.00 33.33


Instance's subtree :
SCORELINECONDTOGGLEFSMBRANCHASSERT
93.79 93.33 81.82 100.00 100.00


Parent :
SCORELINECONDTOGGLEFSMBRANCHASSERTNAME
93.88 90.91 84.62 100.00 100.00 u_wkup_detector_en_2_cdc


Subtrees :
NAMESCORELINECONDTOGGLEFSMBRANCHASSERT
gen_passthru.u_dst_to_src_ack 100.00 100.00 100.00 100.00 100.00


Module Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_3_cdc.u_arb

Instance :
SCORELINECONDTOGGLEFSMBRANCHASSERT
41.67 50.00 33.33


Instance's subtree :
SCORELINECONDTOGGLEFSMBRANCHASSERT
93.79 93.33 81.82 100.00 100.00


Parent :
SCORELINECONDTOGGLEFSMBRANCHASSERTNAME
93.88 90.91 84.62 100.00 100.00 u_wkup_detector_en_3_cdc


Subtrees :
NAMESCORELINECONDTOGGLEFSMBRANCHASSERT
gen_passthru.u_dst_to_src_ack 100.00 100.00 100.00 100.00 100.00


Module Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_4_cdc.u_arb

Instance :
SCORELINECONDTOGGLEFSMBRANCHASSERT
100.00 100.00 100.00


Instance's subtree :
SCORELINECONDTOGGLEFSMBRANCHASSERT
100.00 100.00 100.00 100.00 100.00


Parent :
SCORELINECONDTOGGLEFSMBRANCHASSERTNAME
98.08 100.00 92.31 100.00 100.00 u_wkup_detector_en_4_cdc


Subtrees :
NAMESCORELINECONDTOGGLEFSMBRANCHASSERT
gen_passthru.u_dst_to_src_ack 100.00 100.00 100.00 100.00 100.00


Module Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_5_cdc.u_arb

Instance :
SCORELINECONDTOGGLEFSMBRANCHASSERT
100.00 100.00 100.00


Instance's subtree :
SCORELINECONDTOGGLEFSMBRANCHASSERT
100.00 100.00 100.00 100.00 100.00


Parent :
SCORELINECONDTOGGLEFSMBRANCHASSERTNAME
98.08 100.00 92.31 100.00 100.00 u_wkup_detector_en_5_cdc


Subtrees :
NAMESCORELINECONDTOGGLEFSMBRANCHASSERT
gen_passthru.u_dst_to_src_ack 100.00 100.00 100.00 100.00 100.00


Module Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_6_cdc.u_arb

Instance :
SCORELINECONDTOGGLEFSMBRANCHASSERT
41.67 50.00 33.33


Instance's subtree :
SCORELINECONDTOGGLEFSMBRANCHASSERT
93.79 93.33 81.82 100.00 100.00


Parent :
SCORELINECONDTOGGLEFSMBRANCHASSERTNAME
93.88 90.91 84.62 100.00 100.00 u_wkup_detector_en_6_cdc


Subtrees :
NAMESCORELINECONDTOGGLEFSMBRANCHASSERT
gen_passthru.u_dst_to_src_ack 100.00 100.00 100.00 100.00 100.00

Go back
Module Instances:
tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_0_cdc.u_arb
tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_1_cdc.u_arb
tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_2_cdc.u_arb
tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_3_cdc.u_arb
tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_4_cdc.u_arb
tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_5_cdc.u_arb
tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_6_cdc.u_arb
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_0_cdc.u_arb
Line No.TotalCoveredPercent
TOTAL22100.00
CONT_ASSIGN10000
CONT_ASSIGN28311100.00
CONT_ASSIGN28411100.00
CONT_ASSIGN29900

99 logic dst_update; 100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i); 101 102 if (DstWrReq) begin : gen_wr_req 103 logic dst_lat_q; 104 logic dst_lat_d; 105 logic dst_update_req; 106 logic dst_update_ack; 107 req_sel_e id_q; 108 109 state_e state_q, state_d; 110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 111 if (!rst_dst_ni) begin 112 state_q <= StIdle; 113 end else begin 114 state_q <= state_d; 115 end 116 end 117 118 logic busy; 119 logic dst_req_q, dst_req; 120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 121 if (!rst_dst_ni) begin 122 dst_req_q <= '0; 123 end else if (dst_req_q && dst_lat_d) begin 124 // if request is held, when the transaction starts, 125 // automatically clear. 126 // dst_lat_d is safe to used here because dst_req_q, if set, 127 // always has priority over other hardware based events. 128 dst_req_q <= '0; 129 end else if (dst_req_i && !dst_req_q && busy) begin 130 // if destination request arrives when a handshake event 131 // is already ongoing, hold on to request and send later 132 dst_req_q <= 1'b1; 133 end 134 end 135 assign dst_req = dst_req_q | dst_req_i; 136 137 // Hold data at the beginning of a transaction 138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 139 if (!rst_dst_ni) begin 140 dst_qs_o <= ResetVal; 141 end else if (dst_lat_d) begin 142 dst_qs_o <= dst_ds_i; 143 end else if (dst_lat_q) begin 144 dst_qs_o <= dst_qs_i; 145 end 146 end 147 148 // Which type of transaction is being ack'd back? 149 // 0 - software initiated request 150 // 1 - hardware initiated request 151 // The id information is used by prim_reg_cdc to disambiguate 152 // simultaneous updates from software and hardware. 153 // See scenario 2 case 3 for an example of how this is handled. 154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 155 if (!rst_dst_ni) begin 156 id_q <= SelSwReq; 157 end else if (dst_update_req && dst_update_ack) begin 158 id_q <= SelSwReq; 159 end else if (dst_req && dst_lat_d) begin 160 id_q <= SelSwReq; 161 end else if (!dst_req && dst_lat_d) begin 162 id_q <= SelHwReq; 163 end else if (dst_lat_q) begin 164 id_q <= SelHwReq; 165 end 166 end 167 168 // if a destination update is received when the system is idle and there is no 169 // software side request, hw update must be selected. 170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq, 171 clk_dst_i, !rst_dst_ni) 172 173 // if hw select was chosen, then it must be the case there was a destination update 174 // indication or there was a difference between the transit register and the 175 // latest incoming value. 176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) || 177 $past(dst_lat_q, 1), 178 clk_dst_i, !rst_dst_ni) 179 180 181 // send out prim_subreg request only when proceeding 182 // with software request 183 assign dst_req_o = ~busy & dst_req; 184 185 logic dst_hold_req; 186 always_comb begin 187 state_d = state_q; 188 dst_hold_req = '0; 189 190 // depending on when the request is received, we 191 // may latch d or q. 192 dst_lat_q = '0; 193 dst_lat_d = '0; 194 195 busy = 1'b1; 196 197 unique case (state_q) 198 StIdle: begin 199 busy = '0; 200 if (dst_req) begin 201 // there's a software issued request for change 202 state_d = StWait; 203 dst_lat_d = 1'b1; 204 end else if (dst_update) begin 205 state_d = StWait; 206 dst_lat_d = 1'b1; 207 end else if (dst_qs_o != dst_qs_i) begin 208 // there's a direct destination update 209 // that was blocked by an ongoing transaction 210 state_d = StWait; 211 dst_lat_q = 1'b1; 212 end 213 end 214 215 StWait: begin 216 dst_hold_req = 1'b1; 217 if (dst_update_ack) begin 218 state_d = StIdle; 219 end 220 end 221 222 default: begin 223 state_d = StIdle; 224 end 225 endcase // unique case (state_q) 226 end // always_comb 227 228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q; 229 logic src_req; 230 prim_sync_reqack u_dst_update_sync ( 231 .clk_src_i(clk_dst_i), 232 .rst_src_ni(rst_dst_ni), 233 .clk_dst_i(clk_src_i), 234 .rst_dst_ni(rst_src_ni), 235 .req_chk_i(1'b1), 236 .src_req_i(dst_update_req), 237 .src_ack_o(dst_update_ack), 238 .dst_req_o(src_req), 239 // immediate ack 240 .dst_ack_i(src_req) 241 ); 242 243 assign src_ack_o = src_req & (id_q == SelSwReq); 244 assign src_update_o = src_req & (id_q == SelHwReq); 245 246 // once hardware makes an update request, we must eventually see an update pulse 247 `ifdef FPV_ON 248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o), 249 clk_src_i, !rst_src_ni) 250 // TODO: #14913 check if we can add additional sim assertions. 251 `endif 252 253 `ifdef FPV_ON 254 //VCS coverage off 255 // pragma coverage off 256 257 logic async_flag; 258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin 259 if (!rst_dst_ni) begin 260 async_flag <= '0; 261 end else if (src_update_o) begin 262 async_flag <= '0; 263 end else if (dst_update && !dst_req_o && !busy) begin 264 async_flag <= 1'b1; 265 end 266 end 267 268 //VCS coverage on 269 // pragma coverage on 270 271 // once hardware makes an update request, we must eventually see an update pulse 272 // TODO: #14913 check if we can add additional sim assertions. 273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o), 274 clk_src_i, !rst_src_ni) 275 `endif 276 277 end else begin : gen_passthru 278 // when there is no possibility of conflicting HW transactions, 279 // we can assume that dst_qs_i will only ever take on the value 280 // that is directly related to the transaction. As a result, 281 // there is no need to latch further, and the end destination 282 // can in fact be used as the holding register. 283 1/1 assign dst_qs_o = dst_qs_i; Tests: T4 T14 T68  284 1/1 assign dst_req_o = dst_req_i; Tests: T4 T14 T68  285 286 // since there are no hw transactions, src_update_o is always '0 287 assign src_update_o = '0; 288 289 prim_pulse_sync u_dst_to_src_ack ( 290 .clk_src_i(clk_dst_i), 291 .rst_src_ni(rst_dst_ni), 292 .clk_dst_i(clk_src_i), 293 .rst_dst_ni(rst_src_ni), 294 .src_pulse_i(dst_req_i), 295 .dst_pulse_o(src_ack_o) 296 ); 297 298 logic unused_sigs; 299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};

Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_0_cdc.u_arb
TotalCoveredPercent
Conditions33100.00
Logical33100.00
Non-Logical00
Event00

 LINE       100
 EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
             ------1-----   -----------2----------
-1--2-StatusTests
01CoveredT4,T14,T68
10Unreachable
11Unreachable

 LINE       100
 SUB-EXPRESSION (dst_qs_o != dst_ds_i)
                -----------1----------
-1-StatusTests
0CoveredT1,T2,T3
1CoveredT4,T14,T68
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_1_cdc.u_arb
Line No.TotalCoveredPercent
TOTAL2150.00
CONT_ASSIGN10000
CONT_ASSIGN283100.00
CONT_ASSIGN28411100.00
CONT_ASSIGN29900

99 logic dst_update; 100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i); 101 102 if (DstWrReq) begin : gen_wr_req 103 logic dst_lat_q; 104 logic dst_lat_d; 105 logic dst_update_req; 106 logic dst_update_ack; 107 req_sel_e id_q; 108 109 state_e state_q, state_d; 110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 111 if (!rst_dst_ni) begin 112 state_q <= StIdle; 113 end else begin 114 state_q <= state_d; 115 end 116 end 117 118 logic busy; 119 logic dst_req_q, dst_req; 120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 121 if (!rst_dst_ni) begin 122 dst_req_q <= '0; 123 end else if (dst_req_q && dst_lat_d) begin 124 // if request is held, when the transaction starts, 125 // automatically clear. 126 // dst_lat_d is safe to used here because dst_req_q, if set, 127 // always has priority over other hardware based events. 128 dst_req_q <= '0; 129 end else if (dst_req_i && !dst_req_q && busy) begin 130 // if destination request arrives when a handshake event 131 // is already ongoing, hold on to request and send later 132 dst_req_q <= 1'b1; 133 end 134 end 135 assign dst_req = dst_req_q | dst_req_i; 136 137 // Hold data at the beginning of a transaction 138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 139 if (!rst_dst_ni) begin 140 dst_qs_o <= ResetVal; 141 end else if (dst_lat_d) begin 142 dst_qs_o <= dst_ds_i; 143 end else if (dst_lat_q) begin 144 dst_qs_o <= dst_qs_i; 145 end 146 end 147 148 // Which type of transaction is being ack'd back? 149 // 0 - software initiated request 150 // 1 - hardware initiated request 151 // The id information is used by prim_reg_cdc to disambiguate 152 // simultaneous updates from software and hardware. 153 // See scenario 2 case 3 for an example of how this is handled. 154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 155 if (!rst_dst_ni) begin 156 id_q <= SelSwReq; 157 end else if (dst_update_req && dst_update_ack) begin 158 id_q <= SelSwReq; 159 end else if (dst_req && dst_lat_d) begin 160 id_q <= SelSwReq; 161 end else if (!dst_req && dst_lat_d) begin 162 id_q <= SelHwReq; 163 end else if (dst_lat_q) begin 164 id_q <= SelHwReq; 165 end 166 end 167 168 // if a destination update is received when the system is idle and there is no 169 // software side request, hw update must be selected. 170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq, 171 clk_dst_i, !rst_dst_ni) 172 173 // if hw select was chosen, then it must be the case there was a destination update 174 // indication or there was a difference between the transit register and the 175 // latest incoming value. 176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) || 177 $past(dst_lat_q, 1), 178 clk_dst_i, !rst_dst_ni) 179 180 181 // send out prim_subreg request only when proceeding 182 // with software request 183 assign dst_req_o = ~busy & dst_req; 184 185 logic dst_hold_req; 186 always_comb begin 187 state_d = state_q; 188 dst_hold_req = '0; 189 190 // depending on when the request is received, we 191 // may latch d or q. 192 dst_lat_q = '0; 193 dst_lat_d = '0; 194 195 busy = 1'b1; 196 197 unique case (state_q) 198 StIdle: begin 199 busy = '0; 200 if (dst_req) begin 201 // there's a software issued request for change 202 state_d = StWait; 203 dst_lat_d = 1'b1; 204 end else if (dst_update) begin 205 state_d = StWait; 206 dst_lat_d = 1'b1; 207 end else if (dst_qs_o != dst_qs_i) begin 208 // there's a direct destination update 209 // that was blocked by an ongoing transaction 210 state_d = StWait; 211 dst_lat_q = 1'b1; 212 end 213 end 214 215 StWait: begin 216 dst_hold_req = 1'b1; 217 if (dst_update_ack) begin 218 state_d = StIdle; 219 end 220 end 221 222 default: begin 223 state_d = StIdle; 224 end 225 endcase // unique case (state_q) 226 end // always_comb 227 228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q; 229 logic src_req; 230 prim_sync_reqack u_dst_update_sync ( 231 .clk_src_i(clk_dst_i), 232 .rst_src_ni(rst_dst_ni), 233 .clk_dst_i(clk_src_i), 234 .rst_dst_ni(rst_src_ni), 235 .req_chk_i(1'b1), 236 .src_req_i(dst_update_req), 237 .src_ack_o(dst_update_ack), 238 .dst_req_o(src_req), 239 // immediate ack 240 .dst_ack_i(src_req) 241 ); 242 243 assign src_ack_o = src_req & (id_q == SelSwReq); 244 assign src_update_o = src_req & (id_q == SelHwReq); 245 246 // once hardware makes an update request, we must eventually see an update pulse 247 `ifdef FPV_ON 248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o), 249 clk_src_i, !rst_src_ni) 250 // TODO: #14913 check if we can add additional sim assertions. 251 `endif 252 253 `ifdef FPV_ON 254 //VCS coverage off 255 // pragma coverage off 256 257 logic async_flag; 258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin 259 if (!rst_dst_ni) begin 260 async_flag <= '0; 261 end else if (src_update_o) begin 262 async_flag <= '0; 263 end else if (dst_update && !dst_req_o && !busy) begin 264 async_flag <= 1'b1; 265 end 266 end 267 268 //VCS coverage on 269 // pragma coverage on 270 271 // once hardware makes an update request, we must eventually see an update pulse 272 // TODO: #14913 check if we can add additional sim assertions. 273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o), 274 clk_src_i, !rst_src_ni) 275 `endif 276 277 end else begin : gen_passthru 278 // when there is no possibility of conflicting HW transactions, 279 // we can assume that dst_qs_i will only ever take on the value 280 // that is directly related to the transaction. As a result, 281 // there is no need to latch further, and the end destination 282 // can in fact be used as the holding register. 283 0/1 ==> assign dst_qs_o = dst_qs_i; 284 1/1 assign dst_req_o = dst_req_i; Tests: T169 T91 T174  285 286 // since there are no hw transactions, src_update_o is always '0 287 assign src_update_o = '0; 288 289 prim_pulse_sync u_dst_to_src_ack ( 290 .clk_src_i(clk_dst_i), 291 .rst_src_ni(rst_dst_ni), 292 .clk_dst_i(clk_src_i), 293 .rst_dst_ni(rst_src_ni), 294 .src_pulse_i(dst_req_i), 295 .dst_pulse_o(src_ack_o) 296 ); 297 298 logic unused_sigs; 299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};

Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_1_cdc.u_arb
TotalCoveredPercent
Conditions3133.33
Logical3133.33
Non-Logical00
Event00

 LINE       100
 EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
             ------1-----   -----------2----------
-1--2-StatusTests
01Not Covered
10Unreachable
11Unreachable

 LINE       100
 SUB-EXPRESSION (dst_qs_o != dst_ds_i)
                -----------1----------
-1-StatusTests
0CoveredT1,T2,T3
1Not Covered
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_2_cdc.u_arb
Line No.TotalCoveredPercent
TOTAL2150.00
CONT_ASSIGN10000
CONT_ASSIGN283100.00
CONT_ASSIGN28411100.00
CONT_ASSIGN29900

99 logic dst_update; 100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i); 101 102 if (DstWrReq) begin : gen_wr_req 103 logic dst_lat_q; 104 logic dst_lat_d; 105 logic dst_update_req; 106 logic dst_update_ack; 107 req_sel_e id_q; 108 109 state_e state_q, state_d; 110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 111 if (!rst_dst_ni) begin 112 state_q <= StIdle; 113 end else begin 114 state_q <= state_d; 115 end 116 end 117 118 logic busy; 119 logic dst_req_q, dst_req; 120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 121 if (!rst_dst_ni) begin 122 dst_req_q <= '0; 123 end else if (dst_req_q && dst_lat_d) begin 124 // if request is held, when the transaction starts, 125 // automatically clear. 126 // dst_lat_d is safe to used here because dst_req_q, if set, 127 // always has priority over other hardware based events. 128 dst_req_q <= '0; 129 end else if (dst_req_i && !dst_req_q && busy) begin 130 // if destination request arrives when a handshake event 131 // is already ongoing, hold on to request and send later 132 dst_req_q <= 1'b1; 133 end 134 end 135 assign dst_req = dst_req_q | dst_req_i; 136 137 // Hold data at the beginning of a transaction 138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 139 if (!rst_dst_ni) begin 140 dst_qs_o <= ResetVal; 141 end else if (dst_lat_d) begin 142 dst_qs_o <= dst_ds_i; 143 end else if (dst_lat_q) begin 144 dst_qs_o <= dst_qs_i; 145 end 146 end 147 148 // Which type of transaction is being ack'd back? 149 // 0 - software initiated request 150 // 1 - hardware initiated request 151 // The id information is used by prim_reg_cdc to disambiguate 152 // simultaneous updates from software and hardware. 153 // See scenario 2 case 3 for an example of how this is handled. 154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 155 if (!rst_dst_ni) begin 156 id_q <= SelSwReq; 157 end else if (dst_update_req && dst_update_ack) begin 158 id_q <= SelSwReq; 159 end else if (dst_req && dst_lat_d) begin 160 id_q <= SelSwReq; 161 end else if (!dst_req && dst_lat_d) begin 162 id_q <= SelHwReq; 163 end else if (dst_lat_q) begin 164 id_q <= SelHwReq; 165 end 166 end 167 168 // if a destination update is received when the system is idle and there is no 169 // software side request, hw update must be selected. 170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq, 171 clk_dst_i, !rst_dst_ni) 172 173 // if hw select was chosen, then it must be the case there was a destination update 174 // indication or there was a difference between the transit register and the 175 // latest incoming value. 176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) || 177 $past(dst_lat_q, 1), 178 clk_dst_i, !rst_dst_ni) 179 180 181 // send out prim_subreg request only when proceeding 182 // with software request 183 assign dst_req_o = ~busy & dst_req; 184 185 logic dst_hold_req; 186 always_comb begin 187 state_d = state_q; 188 dst_hold_req = '0; 189 190 // depending on when the request is received, we 191 // may latch d or q. 192 dst_lat_q = '0; 193 dst_lat_d = '0; 194 195 busy = 1'b1; 196 197 unique case (state_q) 198 StIdle: begin 199 busy = '0; 200 if (dst_req) begin 201 // there's a software issued request for change 202 state_d = StWait; 203 dst_lat_d = 1'b1; 204 end else if (dst_update) begin 205 state_d = StWait; 206 dst_lat_d = 1'b1; 207 end else if (dst_qs_o != dst_qs_i) begin 208 // there's a direct destination update 209 // that was blocked by an ongoing transaction 210 state_d = StWait; 211 dst_lat_q = 1'b1; 212 end 213 end 214 215 StWait: begin 216 dst_hold_req = 1'b1; 217 if (dst_update_ack) begin 218 state_d = StIdle; 219 end 220 end 221 222 default: begin 223 state_d = StIdle; 224 end 225 endcase // unique case (state_q) 226 end // always_comb 227 228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q; 229 logic src_req; 230 prim_sync_reqack u_dst_update_sync ( 231 .clk_src_i(clk_dst_i), 232 .rst_src_ni(rst_dst_ni), 233 .clk_dst_i(clk_src_i), 234 .rst_dst_ni(rst_src_ni), 235 .req_chk_i(1'b1), 236 .src_req_i(dst_update_req), 237 .src_ack_o(dst_update_ack), 238 .dst_req_o(src_req), 239 // immediate ack 240 .dst_ack_i(src_req) 241 ); 242 243 assign src_ack_o = src_req & (id_q == SelSwReq); 244 assign src_update_o = src_req & (id_q == SelHwReq); 245 246 // once hardware makes an update request, we must eventually see an update pulse 247 `ifdef FPV_ON 248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o), 249 clk_src_i, !rst_src_ni) 250 // TODO: #14913 check if we can add additional sim assertions. 251 `endif 252 253 `ifdef FPV_ON 254 //VCS coverage off 255 // pragma coverage off 256 257 logic async_flag; 258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin 259 if (!rst_dst_ni) begin 260 async_flag <= '0; 261 end else if (src_update_o) begin 262 async_flag <= '0; 263 end else if (dst_update && !dst_req_o && !busy) begin 264 async_flag <= 1'b1; 265 end 266 end 267 268 //VCS coverage on 269 // pragma coverage on 270 271 // once hardware makes an update request, we must eventually see an update pulse 272 // TODO: #14913 check if we can add additional sim assertions. 273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o), 274 clk_src_i, !rst_src_ni) 275 `endif 276 277 end else begin : gen_passthru 278 // when there is no possibility of conflicting HW transactions, 279 // we can assume that dst_qs_i will only ever take on the value 280 // that is directly related to the transaction. As a result, 281 // there is no need to latch further, and the end destination 282 // can in fact be used as the holding register. 283 0/1 ==> assign dst_qs_o = dst_qs_i; 284 1/1 assign dst_req_o = dst_req_i; Tests: T169 T91 T174  285 286 // since there are no hw transactions, src_update_o is always '0 287 assign src_update_o = '0; 288 289 prim_pulse_sync u_dst_to_src_ack ( 290 .clk_src_i(clk_dst_i), 291 .rst_src_ni(rst_dst_ni), 292 .clk_dst_i(clk_src_i), 293 .rst_dst_ni(rst_src_ni), 294 .src_pulse_i(dst_req_i), 295 .dst_pulse_o(src_ack_o) 296 ); 297 298 logic unused_sigs; 299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};

Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_2_cdc.u_arb
TotalCoveredPercent
Conditions3133.33
Logical3133.33
Non-Logical00
Event00

 LINE       100
 EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
             ------1-----   -----------2----------
-1--2-StatusTests
01Not Covered
10Unreachable
11Unreachable

 LINE       100
 SUB-EXPRESSION (dst_qs_o != dst_ds_i)
                -----------1----------
-1-StatusTests
0CoveredT1,T2,T3
1Not Covered
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_3_cdc.u_arb
Line No.TotalCoveredPercent
TOTAL2150.00
CONT_ASSIGN10000
CONT_ASSIGN283100.00
CONT_ASSIGN28411100.00
CONT_ASSIGN29900

99 logic dst_update; 100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i); 101 102 if (DstWrReq) begin : gen_wr_req 103 logic dst_lat_q; 104 logic dst_lat_d; 105 logic dst_update_req; 106 logic dst_update_ack; 107 req_sel_e id_q; 108 109 state_e state_q, state_d; 110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 111 if (!rst_dst_ni) begin 112 state_q <= StIdle; 113 end else begin 114 state_q <= state_d; 115 end 116 end 117 118 logic busy; 119 logic dst_req_q, dst_req; 120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 121 if (!rst_dst_ni) begin 122 dst_req_q <= '0; 123 end else if (dst_req_q && dst_lat_d) begin 124 // if request is held, when the transaction starts, 125 // automatically clear. 126 // dst_lat_d is safe to used here because dst_req_q, if set, 127 // always has priority over other hardware based events. 128 dst_req_q <= '0; 129 end else if (dst_req_i && !dst_req_q && busy) begin 130 // if destination request arrives when a handshake event 131 // is already ongoing, hold on to request and send later 132 dst_req_q <= 1'b1; 133 end 134 end 135 assign dst_req = dst_req_q | dst_req_i; 136 137 // Hold data at the beginning of a transaction 138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 139 if (!rst_dst_ni) begin 140 dst_qs_o <= ResetVal; 141 end else if (dst_lat_d) begin 142 dst_qs_o <= dst_ds_i; 143 end else if (dst_lat_q) begin 144 dst_qs_o <= dst_qs_i; 145 end 146 end 147 148 // Which type of transaction is being ack'd back? 149 // 0 - software initiated request 150 // 1 - hardware initiated request 151 // The id information is used by prim_reg_cdc to disambiguate 152 // simultaneous updates from software and hardware. 153 // See scenario 2 case 3 for an example of how this is handled. 154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 155 if (!rst_dst_ni) begin 156 id_q <= SelSwReq; 157 end else if (dst_update_req && dst_update_ack) begin 158 id_q <= SelSwReq; 159 end else if (dst_req && dst_lat_d) begin 160 id_q <= SelSwReq; 161 end else if (!dst_req && dst_lat_d) begin 162 id_q <= SelHwReq; 163 end else if (dst_lat_q) begin 164 id_q <= SelHwReq; 165 end 166 end 167 168 // if a destination update is received when the system is idle and there is no 169 // software side request, hw update must be selected. 170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq, 171 clk_dst_i, !rst_dst_ni) 172 173 // if hw select was chosen, then it must be the case there was a destination update 174 // indication or there was a difference between the transit register and the 175 // latest incoming value. 176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) || 177 $past(dst_lat_q, 1), 178 clk_dst_i, !rst_dst_ni) 179 180 181 // send out prim_subreg request only when proceeding 182 // with software request 183 assign dst_req_o = ~busy & dst_req; 184 185 logic dst_hold_req; 186 always_comb begin 187 state_d = state_q; 188 dst_hold_req = '0; 189 190 // depending on when the request is received, we 191 // may latch d or q. 192 dst_lat_q = '0; 193 dst_lat_d = '0; 194 195 busy = 1'b1; 196 197 unique case (state_q) 198 StIdle: begin 199 busy = '0; 200 if (dst_req) begin 201 // there's a software issued request for change 202 state_d = StWait; 203 dst_lat_d = 1'b1; 204 end else if (dst_update) begin 205 state_d = StWait; 206 dst_lat_d = 1'b1; 207 end else if (dst_qs_o != dst_qs_i) begin 208 // there's a direct destination update 209 // that was blocked by an ongoing transaction 210 state_d = StWait; 211 dst_lat_q = 1'b1; 212 end 213 end 214 215 StWait: begin 216 dst_hold_req = 1'b1; 217 if (dst_update_ack) begin 218 state_d = StIdle; 219 end 220 end 221 222 default: begin 223 state_d = StIdle; 224 end 225 endcase // unique case (state_q) 226 end // always_comb 227 228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q; 229 logic src_req; 230 prim_sync_reqack u_dst_update_sync ( 231 .clk_src_i(clk_dst_i), 232 .rst_src_ni(rst_dst_ni), 233 .clk_dst_i(clk_src_i), 234 .rst_dst_ni(rst_src_ni), 235 .req_chk_i(1'b1), 236 .src_req_i(dst_update_req), 237 .src_ack_o(dst_update_ack), 238 .dst_req_o(src_req), 239 // immediate ack 240 .dst_ack_i(src_req) 241 ); 242 243 assign src_ack_o = src_req & (id_q == SelSwReq); 244 assign src_update_o = src_req & (id_q == SelHwReq); 245 246 // once hardware makes an update request, we must eventually see an update pulse 247 `ifdef FPV_ON 248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o), 249 clk_src_i, !rst_src_ni) 250 // TODO: #14913 check if we can add additional sim assertions. 251 `endif 252 253 `ifdef FPV_ON 254 //VCS coverage off 255 // pragma coverage off 256 257 logic async_flag; 258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin 259 if (!rst_dst_ni) begin 260 async_flag <= '0; 261 end else if (src_update_o) begin 262 async_flag <= '0; 263 end else if (dst_update && !dst_req_o && !busy) begin 264 async_flag <= 1'b1; 265 end 266 end 267 268 //VCS coverage on 269 // pragma coverage on 270 271 // once hardware makes an update request, we must eventually see an update pulse 272 // TODO: #14913 check if we can add additional sim assertions. 273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o), 274 clk_src_i, !rst_src_ni) 275 `endif 276 277 end else begin : gen_passthru 278 // when there is no possibility of conflicting HW transactions, 279 // we can assume that dst_qs_i will only ever take on the value 280 // that is directly related to the transaction. As a result, 281 // there is no need to latch further, and the end destination 282 // can in fact be used as the holding register. 283 0/1 ==> assign dst_qs_o = dst_qs_i; 284 1/1 assign dst_req_o = dst_req_i; Tests: T169 T91 T174  285 286 // since there are no hw transactions, src_update_o is always '0 287 assign src_update_o = '0; 288 289 prim_pulse_sync u_dst_to_src_ack ( 290 .clk_src_i(clk_dst_i), 291 .rst_src_ni(rst_dst_ni), 292 .clk_dst_i(clk_src_i), 293 .rst_dst_ni(rst_src_ni), 294 .src_pulse_i(dst_req_i), 295 .dst_pulse_o(src_ack_o) 296 ); 297 298 logic unused_sigs; 299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};

Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_3_cdc.u_arb
TotalCoveredPercent
Conditions3133.33
Logical3133.33
Non-Logical00
Event00

 LINE       100
 EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
             ------1-----   -----------2----------
-1--2-StatusTests
01Not Covered
10Unreachable
11Unreachable

 LINE       100
 SUB-EXPRESSION (dst_qs_o != dst_ds_i)
                -----------1----------
-1-StatusTests
0CoveredT1,T2,T3
1Not Covered
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_4_cdc.u_arb
Line No.TotalCoveredPercent
TOTAL22100.00
CONT_ASSIGN10000
CONT_ASSIGN28311100.00
CONT_ASSIGN28411100.00
CONT_ASSIGN29900

99 logic dst_update; 100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i); 101 102 if (DstWrReq) begin : gen_wr_req 103 logic dst_lat_q; 104 logic dst_lat_d; 105 logic dst_update_req; 106 logic dst_update_ack; 107 req_sel_e id_q; 108 109 state_e state_q, state_d; 110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 111 if (!rst_dst_ni) begin 112 state_q <= StIdle; 113 end else begin 114 state_q <= state_d; 115 end 116 end 117 118 logic busy; 119 logic dst_req_q, dst_req; 120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 121 if (!rst_dst_ni) begin 122 dst_req_q <= '0; 123 end else if (dst_req_q && dst_lat_d) begin 124 // if request is held, when the transaction starts, 125 // automatically clear. 126 // dst_lat_d is safe to used here because dst_req_q, if set, 127 // always has priority over other hardware based events. 128 dst_req_q <= '0; 129 end else if (dst_req_i && !dst_req_q && busy) begin 130 // if destination request arrives when a handshake event 131 // is already ongoing, hold on to request and send later 132 dst_req_q <= 1'b1; 133 end 134 end 135 assign dst_req = dst_req_q | dst_req_i; 136 137 // Hold data at the beginning of a transaction 138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 139 if (!rst_dst_ni) begin 140 dst_qs_o <= ResetVal; 141 end else if (dst_lat_d) begin 142 dst_qs_o <= dst_ds_i; 143 end else if (dst_lat_q) begin 144 dst_qs_o <= dst_qs_i; 145 end 146 end 147 148 // Which type of transaction is being ack'd back? 149 // 0 - software initiated request 150 // 1 - hardware initiated request 151 // The id information is used by prim_reg_cdc to disambiguate 152 // simultaneous updates from software and hardware. 153 // See scenario 2 case 3 for an example of how this is handled. 154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 155 if (!rst_dst_ni) begin 156 id_q <= SelSwReq; 157 end else if (dst_update_req && dst_update_ack) begin 158 id_q <= SelSwReq; 159 end else if (dst_req && dst_lat_d) begin 160 id_q <= SelSwReq; 161 end else if (!dst_req && dst_lat_d) begin 162 id_q <= SelHwReq; 163 end else if (dst_lat_q) begin 164 id_q <= SelHwReq; 165 end 166 end 167 168 // if a destination update is received when the system is idle and there is no 169 // software side request, hw update must be selected. 170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq, 171 clk_dst_i, !rst_dst_ni) 172 173 // if hw select was chosen, then it must be the case there was a destination update 174 // indication or there was a difference between the transit register and the 175 // latest incoming value. 176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) || 177 $past(dst_lat_q, 1), 178 clk_dst_i, !rst_dst_ni) 179 180 181 // send out prim_subreg request only when proceeding 182 // with software request 183 assign dst_req_o = ~busy & dst_req; 184 185 logic dst_hold_req; 186 always_comb begin 187 state_d = state_q; 188 dst_hold_req = '0; 189 190 // depending on when the request is received, we 191 // may latch d or q. 192 dst_lat_q = '0; 193 dst_lat_d = '0; 194 195 busy = 1'b1; 196 197 unique case (state_q) 198 StIdle: begin 199 busy = '0; 200 if (dst_req) begin 201 // there's a software issued request for change 202 state_d = StWait; 203 dst_lat_d = 1'b1; 204 end else if (dst_update) begin 205 state_d = StWait; 206 dst_lat_d = 1'b1; 207 end else if (dst_qs_o != dst_qs_i) begin 208 // there's a direct destination update 209 // that was blocked by an ongoing transaction 210 state_d = StWait; 211 dst_lat_q = 1'b1; 212 end 213 end 214 215 StWait: begin 216 dst_hold_req = 1'b1; 217 if (dst_update_ack) begin 218 state_d = StIdle; 219 end 220 end 221 222 default: begin 223 state_d = StIdle; 224 end 225 endcase // unique case (state_q) 226 end // always_comb 227 228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q; 229 logic src_req; 230 prim_sync_reqack u_dst_update_sync ( 231 .clk_src_i(clk_dst_i), 232 .rst_src_ni(rst_dst_ni), 233 .clk_dst_i(clk_src_i), 234 .rst_dst_ni(rst_src_ni), 235 .req_chk_i(1'b1), 236 .src_req_i(dst_update_req), 237 .src_ack_o(dst_update_ack), 238 .dst_req_o(src_req), 239 // immediate ack 240 .dst_ack_i(src_req) 241 ); 242 243 assign src_ack_o = src_req & (id_q == SelSwReq); 244 assign src_update_o = src_req & (id_q == SelHwReq); 245 246 // once hardware makes an update request, we must eventually see an update pulse 247 `ifdef FPV_ON 248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o), 249 clk_src_i, !rst_src_ni) 250 // TODO: #14913 check if we can add additional sim assertions. 251 `endif 252 253 `ifdef FPV_ON 254 //VCS coverage off 255 // pragma coverage off 256 257 logic async_flag; 258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin 259 if (!rst_dst_ni) begin 260 async_flag <= '0; 261 end else if (src_update_o) begin 262 async_flag <= '0; 263 end else if (dst_update && !dst_req_o && !busy) begin 264 async_flag <= 1'b1; 265 end 266 end 267 268 //VCS coverage on 269 // pragma coverage on 270 271 // once hardware makes an update request, we must eventually see an update pulse 272 // TODO: #14913 check if we can add additional sim assertions. 273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o), 274 clk_src_i, !rst_src_ni) 275 `endif 276 277 end else begin : gen_passthru 278 // when there is no possibility of conflicting HW transactions, 279 // we can assume that dst_qs_i will only ever take on the value 280 // that is directly related to the transaction. As a result, 281 // there is no need to latch further, and the end destination 282 // can in fact be used as the holding register. 283 1/1 assign dst_qs_o = dst_qs_i; Tests: T27  284 1/1 assign dst_req_o = dst_req_i; Tests: T27 T169 T91  285 286 // since there are no hw transactions, src_update_o is always '0 287 assign src_update_o = '0; 288 289 prim_pulse_sync u_dst_to_src_ack ( 290 .clk_src_i(clk_dst_i), 291 .rst_src_ni(rst_dst_ni), 292 .clk_dst_i(clk_src_i), 293 .rst_dst_ni(rst_src_ni), 294 .src_pulse_i(dst_req_i), 295 .dst_pulse_o(src_ack_o) 296 ); 297 298 logic unused_sigs; 299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};

Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_4_cdc.u_arb
TotalCoveredPercent
Conditions33100.00
Logical33100.00
Non-Logical00
Event00

 LINE       100
 EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
             ------1-----   -----------2----------
-1--2-StatusTests
01CoveredT27
10Unreachable
11Unreachable

 LINE       100
 SUB-EXPRESSION (dst_qs_o != dst_ds_i)
                -----------1----------
-1-StatusTests
0CoveredT1,T2,T3
1CoveredT27
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_5_cdc.u_arb
Line No.TotalCoveredPercent
TOTAL22100.00
CONT_ASSIGN10000
CONT_ASSIGN28311100.00
CONT_ASSIGN28411100.00
CONT_ASSIGN29900

99 logic dst_update; 100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i); 101 102 if (DstWrReq) begin : gen_wr_req 103 logic dst_lat_q; 104 logic dst_lat_d; 105 logic dst_update_req; 106 logic dst_update_ack; 107 req_sel_e id_q; 108 109 state_e state_q, state_d; 110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 111 if (!rst_dst_ni) begin 112 state_q <= StIdle; 113 end else begin 114 state_q <= state_d; 115 end 116 end 117 118 logic busy; 119 logic dst_req_q, dst_req; 120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 121 if (!rst_dst_ni) begin 122 dst_req_q <= '0; 123 end else if (dst_req_q && dst_lat_d) begin 124 // if request is held, when the transaction starts, 125 // automatically clear. 126 // dst_lat_d is safe to used here because dst_req_q, if set, 127 // always has priority over other hardware based events. 128 dst_req_q <= '0; 129 end else if (dst_req_i && !dst_req_q && busy) begin 130 // if destination request arrives when a handshake event 131 // is already ongoing, hold on to request and send later 132 dst_req_q <= 1'b1; 133 end 134 end 135 assign dst_req = dst_req_q | dst_req_i; 136 137 // Hold data at the beginning of a transaction 138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 139 if (!rst_dst_ni) begin 140 dst_qs_o <= ResetVal; 141 end else if (dst_lat_d) begin 142 dst_qs_o <= dst_ds_i; 143 end else if (dst_lat_q) begin 144 dst_qs_o <= dst_qs_i; 145 end 146 end 147 148 // Which type of transaction is being ack'd back? 149 // 0 - software initiated request 150 // 1 - hardware initiated request 151 // The id information is used by prim_reg_cdc to disambiguate 152 // simultaneous updates from software and hardware. 153 // See scenario 2 case 3 for an example of how this is handled. 154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 155 if (!rst_dst_ni) begin 156 id_q <= SelSwReq; 157 end else if (dst_update_req && dst_update_ack) begin 158 id_q <= SelSwReq; 159 end else if (dst_req && dst_lat_d) begin 160 id_q <= SelSwReq; 161 end else if (!dst_req && dst_lat_d) begin 162 id_q <= SelHwReq; 163 end else if (dst_lat_q) begin 164 id_q <= SelHwReq; 165 end 166 end 167 168 // if a destination update is received when the system is idle and there is no 169 // software side request, hw update must be selected. 170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq, 171 clk_dst_i, !rst_dst_ni) 172 173 // if hw select was chosen, then it must be the case there was a destination update 174 // indication or there was a difference between the transit register and the 175 // latest incoming value. 176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) || 177 $past(dst_lat_q, 1), 178 clk_dst_i, !rst_dst_ni) 179 180 181 // send out prim_subreg request only when proceeding 182 // with software request 183 assign dst_req_o = ~busy & dst_req; 184 185 logic dst_hold_req; 186 always_comb begin 187 state_d = state_q; 188 dst_hold_req = '0; 189 190 // depending on when the request is received, we 191 // may latch d or q. 192 dst_lat_q = '0; 193 dst_lat_d = '0; 194 195 busy = 1'b1; 196 197 unique case (state_q) 198 StIdle: begin 199 busy = '0; 200 if (dst_req) begin 201 // there's a software issued request for change 202 state_d = StWait; 203 dst_lat_d = 1'b1; 204 end else if (dst_update) begin 205 state_d = StWait; 206 dst_lat_d = 1'b1; 207 end else if (dst_qs_o != dst_qs_i) begin 208 // there's a direct destination update 209 // that was blocked by an ongoing transaction 210 state_d = StWait; 211 dst_lat_q = 1'b1; 212 end 213 end 214 215 StWait: begin 216 dst_hold_req = 1'b1; 217 if (dst_update_ack) begin 218 state_d = StIdle; 219 end 220 end 221 222 default: begin 223 state_d = StIdle; 224 end 225 endcase // unique case (state_q) 226 end // always_comb 227 228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q; 229 logic src_req; 230 prim_sync_reqack u_dst_update_sync ( 231 .clk_src_i(clk_dst_i), 232 .rst_src_ni(rst_dst_ni), 233 .clk_dst_i(clk_src_i), 234 .rst_dst_ni(rst_src_ni), 235 .req_chk_i(1'b1), 236 .src_req_i(dst_update_req), 237 .src_ack_o(dst_update_ack), 238 .dst_req_o(src_req), 239 // immediate ack 240 .dst_ack_i(src_req) 241 ); 242 243 assign src_ack_o = src_req & (id_q == SelSwReq); 244 assign src_update_o = src_req & (id_q == SelHwReq); 245 246 // once hardware makes an update request, we must eventually see an update pulse 247 `ifdef FPV_ON 248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o), 249 clk_src_i, !rst_src_ni) 250 // TODO: #14913 check if we can add additional sim assertions. 251 `endif 252 253 `ifdef FPV_ON 254 //VCS coverage off 255 // pragma coverage off 256 257 logic async_flag; 258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin 259 if (!rst_dst_ni) begin 260 async_flag <= '0; 261 end else if (src_update_o) begin 262 async_flag <= '0; 263 end else if (dst_update && !dst_req_o && !busy) begin 264 async_flag <= 1'b1; 265 end 266 end 267 268 //VCS coverage on 269 // pragma coverage on 270 271 // once hardware makes an update request, we must eventually see an update pulse 272 // TODO: #14913 check if we can add additional sim assertions. 273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o), 274 clk_src_i, !rst_src_ni) 275 `endif 276 277 end else begin : gen_passthru 278 // when there is no possibility of conflicting HW transactions, 279 // we can assume that dst_qs_i will only ever take on the value 280 // that is directly related to the transaction. As a result, 281 // there is no need to latch further, and the end destination 282 // can in fact be used as the holding register. 283 1/1 assign dst_qs_o = dst_qs_i; Tests: T69 T70 T71  284 1/1 assign dst_req_o = dst_req_i; Tests: T69 T70 T71  285 286 // since there are no hw transactions, src_update_o is always '0 287 assign src_update_o = '0; 288 289 prim_pulse_sync u_dst_to_src_ack ( 290 .clk_src_i(clk_dst_i), 291 .rst_src_ni(rst_dst_ni), 292 .clk_dst_i(clk_src_i), 293 .rst_dst_ni(rst_src_ni), 294 .src_pulse_i(dst_req_i), 295 .dst_pulse_o(src_ack_o) 296 ); 297 298 logic unused_sigs; 299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};

Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_5_cdc.u_arb
TotalCoveredPercent
Conditions33100.00
Logical33100.00
Non-Logical00
Event00

 LINE       100
 EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
             ------1-----   -----------2----------
-1--2-StatusTests
01CoveredT69,T70,T71
10Unreachable
11Unreachable

 LINE       100
 SUB-EXPRESSION (dst_qs_o != dst_ds_i)
                -----------1----------
-1-StatusTests
0CoveredT1,T2,T3
1CoveredT69,T70,T71
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_6_cdc.u_arb
Line No.TotalCoveredPercent
TOTAL2150.00
CONT_ASSIGN10000
CONT_ASSIGN283100.00
CONT_ASSIGN28411100.00
CONT_ASSIGN29900

99 logic dst_update; 100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i); 101 102 if (DstWrReq) begin : gen_wr_req 103 logic dst_lat_q; 104 logic dst_lat_d; 105 logic dst_update_req; 106 logic dst_update_ack; 107 req_sel_e id_q; 108 109 state_e state_q, state_d; 110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 111 if (!rst_dst_ni) begin 112 state_q <= StIdle; 113 end else begin 114 state_q <= state_d; 115 end 116 end 117 118 logic busy; 119 logic dst_req_q, dst_req; 120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 121 if (!rst_dst_ni) begin 122 dst_req_q <= '0; 123 end else if (dst_req_q && dst_lat_d) begin 124 // if request is held, when the transaction starts, 125 // automatically clear. 126 // dst_lat_d is safe to used here because dst_req_q, if set, 127 // always has priority over other hardware based events. 128 dst_req_q <= '0; 129 end else if (dst_req_i && !dst_req_q && busy) begin 130 // if destination request arrives when a handshake event 131 // is already ongoing, hold on to request and send later 132 dst_req_q <= 1'b1; 133 end 134 end 135 assign dst_req = dst_req_q | dst_req_i; 136 137 // Hold data at the beginning of a transaction 138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 139 if (!rst_dst_ni) begin 140 dst_qs_o <= ResetVal; 141 end else if (dst_lat_d) begin 142 dst_qs_o <= dst_ds_i; 143 end else if (dst_lat_q) begin 144 dst_qs_o <= dst_qs_i; 145 end 146 end 147 148 // Which type of transaction is being ack'd back? 149 // 0 - software initiated request 150 // 1 - hardware initiated request 151 // The id information is used by prim_reg_cdc to disambiguate 152 // simultaneous updates from software and hardware. 153 // See scenario 2 case 3 for an example of how this is handled. 154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin 155 if (!rst_dst_ni) begin 156 id_q <= SelSwReq; 157 end else if (dst_update_req && dst_update_ack) begin 158 id_q <= SelSwReq; 159 end else if (dst_req && dst_lat_d) begin 160 id_q <= SelSwReq; 161 end else if (!dst_req && dst_lat_d) begin 162 id_q <= SelHwReq; 163 end else if (dst_lat_q) begin 164 id_q <= SelHwReq; 165 end 166 end 167 168 // if a destination update is received when the system is idle and there is no 169 // software side request, hw update must be selected. 170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq, 171 clk_dst_i, !rst_dst_ni) 172 173 // if hw select was chosen, then it must be the case there was a destination update 174 // indication or there was a difference between the transit register and the 175 // latest incoming value. 176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) || 177 $past(dst_lat_q, 1), 178 clk_dst_i, !rst_dst_ni) 179 180 181 // send out prim_subreg request only when proceeding 182 // with software request 183 assign dst_req_o = ~busy & dst_req; 184 185 logic dst_hold_req; 186 always_comb begin 187 state_d = state_q; 188 dst_hold_req = '0; 189 190 // depending on when the request is received, we 191 // may latch d or q. 192 dst_lat_q = '0; 193 dst_lat_d = '0; 194 195 busy = 1'b1; 196 197 unique case (state_q) 198 StIdle: begin 199 busy = '0; 200 if (dst_req) begin 201 // there's a software issued request for change 202 state_d = StWait; 203 dst_lat_d = 1'b1; 204 end else if (dst_update) begin 205 state_d = StWait; 206 dst_lat_d = 1'b1; 207 end else if (dst_qs_o != dst_qs_i) begin 208 // there's a direct destination update 209 // that was blocked by an ongoing transaction 210 state_d = StWait; 211 dst_lat_q = 1'b1; 212 end 213 end 214 215 StWait: begin 216 dst_hold_req = 1'b1; 217 if (dst_update_ack) begin 218 state_d = StIdle; 219 end 220 end 221 222 default: begin 223 state_d = StIdle; 224 end 225 endcase // unique case (state_q) 226 end // always_comb 227 228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q; 229 logic src_req; 230 prim_sync_reqack u_dst_update_sync ( 231 .clk_src_i(clk_dst_i), 232 .rst_src_ni(rst_dst_ni), 233 .clk_dst_i(clk_src_i), 234 .rst_dst_ni(rst_src_ni), 235 .req_chk_i(1'b1), 236 .src_req_i(dst_update_req), 237 .src_ack_o(dst_update_ack), 238 .dst_req_o(src_req), 239 // immediate ack 240 .dst_ack_i(src_req) 241 ); 242 243 assign src_ack_o = src_req & (id_q == SelSwReq); 244 assign src_update_o = src_req & (id_q == SelHwReq); 245 246 // once hardware makes an update request, we must eventually see an update pulse 247 `ifdef FPV_ON 248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o), 249 clk_src_i, !rst_src_ni) 250 // TODO: #14913 check if we can add additional sim assertions. 251 `endif 252 253 `ifdef FPV_ON 254 //VCS coverage off 255 // pragma coverage off 256 257 logic async_flag; 258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin 259 if (!rst_dst_ni) begin 260 async_flag <= '0; 261 end else if (src_update_o) begin 262 async_flag <= '0; 263 end else if (dst_update && !dst_req_o && !busy) begin 264 async_flag <= 1'b1; 265 end 266 end 267 268 //VCS coverage on 269 // pragma coverage on 270 271 // once hardware makes an update request, we must eventually see an update pulse 272 // TODO: #14913 check if we can add additional sim assertions. 273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o), 274 clk_src_i, !rst_src_ni) 275 `endif 276 277 end else begin : gen_passthru 278 // when there is no possibility of conflicting HW transactions, 279 // we can assume that dst_qs_i will only ever take on the value 280 // that is directly related to the transaction. As a result, 281 // there is no need to latch further, and the end destination 282 // can in fact be used as the holding register. 283 0/1 ==> assign dst_qs_o = dst_qs_i; 284 1/1 assign dst_req_o = dst_req_i; Tests: T169 T91 T174  285 286 // since there are no hw transactions, src_update_o is always '0 287 assign src_update_o = '0; 288 289 prim_pulse_sync u_dst_to_src_ack ( 290 .clk_src_i(clk_dst_i), 291 .rst_src_ni(rst_dst_ni), 292 .clk_dst_i(clk_src_i), 293 .rst_dst_ni(rst_src_ni), 294 .src_pulse_i(dst_req_i), 295 .dst_pulse_o(src_ack_o) 296 ); 297 298 logic unused_sigs; 299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};

Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_6_cdc.u_arb
TotalCoveredPercent
Conditions3133.33
Logical3133.33
Non-Logical00
Event00

 LINE       100
 EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
             ------1-----   -----------2----------
-1--2-StatusTests
01Not Covered
10Unreachable
11Unreachable

 LINE       100
 SUB-EXPRESSION (dst_qs_o != dst_ds_i)
                -----------1----------
-1-StatusTests
0CoveredT1,T2,T3
1Not Covered
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%