Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_0_cdc.u_arb
| Line No. | Total | Covered | Percent |
TOTAL | | 2 | 2 | 100.00 |
CONT_ASSIGN | 100 | 0 | 0 | |
CONT_ASSIGN | 283 | 1 | 1 | 100.00 |
CONT_ASSIGN | 284 | 1 | 1 | 100.00 |
CONT_ASSIGN | 299 | 0 | 0 | |
99 logic dst_update;
100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i);
101
102 if (DstWrReq) begin : gen_wr_req
103 logic dst_lat_q;
104 logic dst_lat_d;
105 logic dst_update_req;
106 logic dst_update_ack;
107 req_sel_e id_q;
108
109 state_e state_q, state_d;
110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
111 if (!rst_dst_ni) begin
112 state_q <= StIdle;
113 end else begin
114 state_q <= state_d;
115 end
116 end
117
118 logic busy;
119 logic dst_req_q, dst_req;
120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
121 if (!rst_dst_ni) begin
122 dst_req_q <= '0;
123 end else if (dst_req_q && dst_lat_d) begin
124 // if request is held, when the transaction starts,
125 // automatically clear.
126 // dst_lat_d is safe to used here because dst_req_q, if set,
127 // always has priority over other hardware based events.
128 dst_req_q <= '0;
129 end else if (dst_req_i && !dst_req_q && busy) begin
130 // if destination request arrives when a handshake event
131 // is already ongoing, hold on to request and send later
132 dst_req_q <= 1'b1;
133 end
134 end
135 assign dst_req = dst_req_q | dst_req_i;
136
137 // Hold data at the beginning of a transaction
138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
139 if (!rst_dst_ni) begin
140 dst_qs_o <= ResetVal;
141 end else if (dst_lat_d) begin
142 dst_qs_o <= dst_ds_i;
143 end else if (dst_lat_q) begin
144 dst_qs_o <= dst_qs_i;
145 end
146 end
147
148 // Which type of transaction is being ack'd back?
149 // 0 - software initiated request
150 // 1 - hardware initiated request
151 // The id information is used by prim_reg_cdc to disambiguate
152 // simultaneous updates from software and hardware.
153 // See scenario 2 case 3 for an example of how this is handled.
154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
155 if (!rst_dst_ni) begin
156 id_q <= SelSwReq;
157 end else if (dst_update_req && dst_update_ack) begin
158 id_q <= SelSwReq;
159 end else if (dst_req && dst_lat_d) begin
160 id_q <= SelSwReq;
161 end else if (!dst_req && dst_lat_d) begin
162 id_q <= SelHwReq;
163 end else if (dst_lat_q) begin
164 id_q <= SelHwReq;
165 end
166 end
167
168 // if a destination update is received when the system is idle and there is no
169 // software side request, hw update must be selected.
170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq,
171 clk_dst_i, !rst_dst_ni)
172
173 // if hw select was chosen, then it must be the case there was a destination update
174 // indication or there was a difference between the transit register and the
175 // latest incoming value.
176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) ||
177 $past(dst_lat_q, 1),
178 clk_dst_i, !rst_dst_ni)
179
180
181 // send out prim_subreg request only when proceeding
182 // with software request
183 assign dst_req_o = ~busy & dst_req;
184
185 logic dst_hold_req;
186 always_comb begin
187 state_d = state_q;
188 dst_hold_req = '0;
189
190 // depending on when the request is received, we
191 // may latch d or q.
192 dst_lat_q = '0;
193 dst_lat_d = '0;
194
195 busy = 1'b1;
196
197 unique case (state_q)
198 StIdle: begin
199 busy = '0;
200 if (dst_req) begin
201 // there's a software issued request for change
202 state_d = StWait;
203 dst_lat_d = 1'b1;
204 end else if (dst_update) begin
205 state_d = StWait;
206 dst_lat_d = 1'b1;
207 end else if (dst_qs_o != dst_qs_i) begin
208 // there's a direct destination update
209 // that was blocked by an ongoing transaction
210 state_d = StWait;
211 dst_lat_q = 1'b1;
212 end
213 end
214
215 StWait: begin
216 dst_hold_req = 1'b1;
217 if (dst_update_ack) begin
218 state_d = StIdle;
219 end
220 end
221
222 default: begin
223 state_d = StIdle;
224 end
225 endcase // unique case (state_q)
226 end // always_comb
227
228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q;
229 logic src_req;
230 prim_sync_reqack u_dst_update_sync (
231 .clk_src_i(clk_dst_i),
232 .rst_src_ni(rst_dst_ni),
233 .clk_dst_i(clk_src_i),
234 .rst_dst_ni(rst_src_ni),
235 .req_chk_i(1'b1),
236 .src_req_i(dst_update_req),
237 .src_ack_o(dst_update_ack),
238 .dst_req_o(src_req),
239 // immediate ack
240 .dst_ack_i(src_req)
241 );
242
243 assign src_ack_o = src_req & (id_q == SelSwReq);
244 assign src_update_o = src_req & (id_q == SelHwReq);
245
246 // once hardware makes an update request, we must eventually see an update pulse
247 `ifdef FPV_ON
248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o),
249 clk_src_i, !rst_src_ni)
250 // TODO: #14913 check if we can add additional sim assertions.
251 `endif
252
253 `ifdef FPV_ON
254 //VCS coverage off
255 // pragma coverage off
256
257 logic async_flag;
258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin
259 if (!rst_dst_ni) begin
260 async_flag <= '0;
261 end else if (src_update_o) begin
262 async_flag <= '0;
263 end else if (dst_update && !dst_req_o && !busy) begin
264 async_flag <= 1'b1;
265 end
266 end
267
268 //VCS coverage on
269 // pragma coverage on
270
271 // once hardware makes an update request, we must eventually see an update pulse
272 // TODO: #14913 check if we can add additional sim assertions.
273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o),
274 clk_src_i, !rst_src_ni)
275 `endif
276
277 end else begin : gen_passthru
278 // when there is no possibility of conflicting HW transactions,
279 // we can assume that dst_qs_i will only ever take on the value
280 // that is directly related to the transaction. As a result,
281 // there is no need to latch further, and the end destination
282 // can in fact be used as the holding register.
283 1/1 assign dst_qs_o = dst_qs_i;
Tests: T5 T26 T71
284 1/1 assign dst_req_o = dst_req_i;
Tests: T5 T26 T71
285
286 // since there are no hw transactions, src_update_o is always '0
287 assign src_update_o = '0;
288
289 prim_pulse_sync u_dst_to_src_ack (
290 .clk_src_i(clk_dst_i),
291 .rst_src_ni(rst_dst_ni),
292 .clk_dst_i(clk_src_i),
293 .rst_dst_ni(rst_src_ni),
294 .src_pulse_i(dst_req_i),
295 .dst_pulse_o(src_ack_o)
296 );
297
298 logic unused_sigs;
299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};
Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_0_cdc.u_arb
| Total | Covered | Percent |
Conditions | 3 | 3 | 100.00 |
Logical | 3 | 3 | 100.00 |
Non-Logical | 0 | 0 | |
Event | 0 | 0 | |
LINE 100
EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
------1----- -----------2----------
-1- | -2- | Status | Tests |
0 | 1 | Covered | T5,T26,T71 |
1 | 0 | Unreachable | |
1 | 1 | Unreachable | |
LINE 100
SUB-EXPRESSION (dst_qs_o != dst_ds_i)
-----------1----------
-1- | Status | Tests |
0 | Covered | T1,T2,T3 |
1 | Covered | T5,T26,T71 |
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_1_cdc.u_arb
| Line No. | Total | Covered | Percent |
TOTAL | | 2 | 1 | 50.00 |
CONT_ASSIGN | 100 | 0 | 0 | |
CONT_ASSIGN | 283 | 1 | 0 | 0.00 |
CONT_ASSIGN | 284 | 1 | 1 | 100.00 |
CONT_ASSIGN | 299 | 0 | 0 | |
99 logic dst_update;
100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i);
101
102 if (DstWrReq) begin : gen_wr_req
103 logic dst_lat_q;
104 logic dst_lat_d;
105 logic dst_update_req;
106 logic dst_update_ack;
107 req_sel_e id_q;
108
109 state_e state_q, state_d;
110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
111 if (!rst_dst_ni) begin
112 state_q <= StIdle;
113 end else begin
114 state_q <= state_d;
115 end
116 end
117
118 logic busy;
119 logic dst_req_q, dst_req;
120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
121 if (!rst_dst_ni) begin
122 dst_req_q <= '0;
123 end else if (dst_req_q && dst_lat_d) begin
124 // if request is held, when the transaction starts,
125 // automatically clear.
126 // dst_lat_d is safe to used here because dst_req_q, if set,
127 // always has priority over other hardware based events.
128 dst_req_q <= '0;
129 end else if (dst_req_i && !dst_req_q && busy) begin
130 // if destination request arrives when a handshake event
131 // is already ongoing, hold on to request and send later
132 dst_req_q <= 1'b1;
133 end
134 end
135 assign dst_req = dst_req_q | dst_req_i;
136
137 // Hold data at the beginning of a transaction
138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
139 if (!rst_dst_ni) begin
140 dst_qs_o <= ResetVal;
141 end else if (dst_lat_d) begin
142 dst_qs_o <= dst_ds_i;
143 end else if (dst_lat_q) begin
144 dst_qs_o <= dst_qs_i;
145 end
146 end
147
148 // Which type of transaction is being ack'd back?
149 // 0 - software initiated request
150 // 1 - hardware initiated request
151 // The id information is used by prim_reg_cdc to disambiguate
152 // simultaneous updates from software and hardware.
153 // See scenario 2 case 3 for an example of how this is handled.
154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
155 if (!rst_dst_ni) begin
156 id_q <= SelSwReq;
157 end else if (dst_update_req && dst_update_ack) begin
158 id_q <= SelSwReq;
159 end else if (dst_req && dst_lat_d) begin
160 id_q <= SelSwReq;
161 end else if (!dst_req && dst_lat_d) begin
162 id_q <= SelHwReq;
163 end else if (dst_lat_q) begin
164 id_q <= SelHwReq;
165 end
166 end
167
168 // if a destination update is received when the system is idle and there is no
169 // software side request, hw update must be selected.
170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq,
171 clk_dst_i, !rst_dst_ni)
172
173 // if hw select was chosen, then it must be the case there was a destination update
174 // indication or there was a difference between the transit register and the
175 // latest incoming value.
176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) ||
177 $past(dst_lat_q, 1),
178 clk_dst_i, !rst_dst_ni)
179
180
181 // send out prim_subreg request only when proceeding
182 // with software request
183 assign dst_req_o = ~busy & dst_req;
184
185 logic dst_hold_req;
186 always_comb begin
187 state_d = state_q;
188 dst_hold_req = '0;
189
190 // depending on when the request is received, we
191 // may latch d or q.
192 dst_lat_q = '0;
193 dst_lat_d = '0;
194
195 busy = 1'b1;
196
197 unique case (state_q)
198 StIdle: begin
199 busy = '0;
200 if (dst_req) begin
201 // there's a software issued request for change
202 state_d = StWait;
203 dst_lat_d = 1'b1;
204 end else if (dst_update) begin
205 state_d = StWait;
206 dst_lat_d = 1'b1;
207 end else if (dst_qs_o != dst_qs_i) begin
208 // there's a direct destination update
209 // that was blocked by an ongoing transaction
210 state_d = StWait;
211 dst_lat_q = 1'b1;
212 end
213 end
214
215 StWait: begin
216 dst_hold_req = 1'b1;
217 if (dst_update_ack) begin
218 state_d = StIdle;
219 end
220 end
221
222 default: begin
223 state_d = StIdle;
224 end
225 endcase // unique case (state_q)
226 end // always_comb
227
228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q;
229 logic src_req;
230 prim_sync_reqack u_dst_update_sync (
231 .clk_src_i(clk_dst_i),
232 .rst_src_ni(rst_dst_ni),
233 .clk_dst_i(clk_src_i),
234 .rst_dst_ni(rst_src_ni),
235 .req_chk_i(1'b1),
236 .src_req_i(dst_update_req),
237 .src_ack_o(dst_update_ack),
238 .dst_req_o(src_req),
239 // immediate ack
240 .dst_ack_i(src_req)
241 );
242
243 assign src_ack_o = src_req & (id_q == SelSwReq);
244 assign src_update_o = src_req & (id_q == SelHwReq);
245
246 // once hardware makes an update request, we must eventually see an update pulse
247 `ifdef FPV_ON
248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o),
249 clk_src_i, !rst_src_ni)
250 // TODO: #14913 check if we can add additional sim assertions.
251 `endif
252
253 `ifdef FPV_ON
254 //VCS coverage off
255 // pragma coverage off
256
257 logic async_flag;
258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin
259 if (!rst_dst_ni) begin
260 async_flag <= '0;
261 end else if (src_update_o) begin
262 async_flag <= '0;
263 end else if (dst_update && !dst_req_o && !busy) begin
264 async_flag <= 1'b1;
265 end
266 end
267
268 //VCS coverage on
269 // pragma coverage on
270
271 // once hardware makes an update request, we must eventually see an update pulse
272 // TODO: #14913 check if we can add additional sim assertions.
273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o),
274 clk_src_i, !rst_src_ni)
275 `endif
276
277 end else begin : gen_passthru
278 // when there is no possibility of conflicting HW transactions,
279 // we can assume that dst_qs_i will only ever take on the value
280 // that is directly related to the transaction. As a result,
281 // there is no need to latch further, and the end destination
282 // can in fact be used as the holding register.
283 0/1 ==> assign dst_qs_o = dst_qs_i;
284 1/1 assign dst_req_o = dst_req_i;
Tests: T178 T182 T183
285
286 // since there are no hw transactions, src_update_o is always '0
287 assign src_update_o = '0;
288
289 prim_pulse_sync u_dst_to_src_ack (
290 .clk_src_i(clk_dst_i),
291 .rst_src_ni(rst_dst_ni),
292 .clk_dst_i(clk_src_i),
293 .rst_dst_ni(rst_src_ni),
294 .src_pulse_i(dst_req_i),
295 .dst_pulse_o(src_ack_o)
296 );
297
298 logic unused_sigs;
299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};
Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_1_cdc.u_arb
| Total | Covered | Percent |
Conditions | 3 | 1 | 33.33 |
Logical | 3 | 1 | 33.33 |
Non-Logical | 0 | 0 | |
Event | 0 | 0 | |
LINE 100
EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
------1----- -----------2----------
-1- | -2- | Status | Tests |
0 | 1 | Not Covered | |
1 | 0 | Unreachable | |
1 | 1 | Unreachable | |
LINE 100
SUB-EXPRESSION (dst_qs_o != dst_ds_i)
-----------1----------
-1- | Status | Tests |
0 | Covered | T1,T2,T3 |
1 | Not Covered | |
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_2_cdc.u_arb
| Line No. | Total | Covered | Percent |
TOTAL | | 2 | 1 | 50.00 |
CONT_ASSIGN | 100 | 0 | 0 | |
CONT_ASSIGN | 283 | 1 | 0 | 0.00 |
CONT_ASSIGN | 284 | 1 | 1 | 100.00 |
CONT_ASSIGN | 299 | 0 | 0 | |
99 logic dst_update;
100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i);
101
102 if (DstWrReq) begin : gen_wr_req
103 logic dst_lat_q;
104 logic dst_lat_d;
105 logic dst_update_req;
106 logic dst_update_ack;
107 req_sel_e id_q;
108
109 state_e state_q, state_d;
110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
111 if (!rst_dst_ni) begin
112 state_q <= StIdle;
113 end else begin
114 state_q <= state_d;
115 end
116 end
117
118 logic busy;
119 logic dst_req_q, dst_req;
120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
121 if (!rst_dst_ni) begin
122 dst_req_q <= '0;
123 end else if (dst_req_q && dst_lat_d) begin
124 // if request is held, when the transaction starts,
125 // automatically clear.
126 // dst_lat_d is safe to used here because dst_req_q, if set,
127 // always has priority over other hardware based events.
128 dst_req_q <= '0;
129 end else if (dst_req_i && !dst_req_q && busy) begin
130 // if destination request arrives when a handshake event
131 // is already ongoing, hold on to request and send later
132 dst_req_q <= 1'b1;
133 end
134 end
135 assign dst_req = dst_req_q | dst_req_i;
136
137 // Hold data at the beginning of a transaction
138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
139 if (!rst_dst_ni) begin
140 dst_qs_o <= ResetVal;
141 end else if (dst_lat_d) begin
142 dst_qs_o <= dst_ds_i;
143 end else if (dst_lat_q) begin
144 dst_qs_o <= dst_qs_i;
145 end
146 end
147
148 // Which type of transaction is being ack'd back?
149 // 0 - software initiated request
150 // 1 - hardware initiated request
151 // The id information is used by prim_reg_cdc to disambiguate
152 // simultaneous updates from software and hardware.
153 // See scenario 2 case 3 for an example of how this is handled.
154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
155 if (!rst_dst_ni) begin
156 id_q <= SelSwReq;
157 end else if (dst_update_req && dst_update_ack) begin
158 id_q <= SelSwReq;
159 end else if (dst_req && dst_lat_d) begin
160 id_q <= SelSwReq;
161 end else if (!dst_req && dst_lat_d) begin
162 id_q <= SelHwReq;
163 end else if (dst_lat_q) begin
164 id_q <= SelHwReq;
165 end
166 end
167
168 // if a destination update is received when the system is idle and there is no
169 // software side request, hw update must be selected.
170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq,
171 clk_dst_i, !rst_dst_ni)
172
173 // if hw select was chosen, then it must be the case there was a destination update
174 // indication or there was a difference between the transit register and the
175 // latest incoming value.
176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) ||
177 $past(dst_lat_q, 1),
178 clk_dst_i, !rst_dst_ni)
179
180
181 // send out prim_subreg request only when proceeding
182 // with software request
183 assign dst_req_o = ~busy & dst_req;
184
185 logic dst_hold_req;
186 always_comb begin
187 state_d = state_q;
188 dst_hold_req = '0;
189
190 // depending on when the request is received, we
191 // may latch d or q.
192 dst_lat_q = '0;
193 dst_lat_d = '0;
194
195 busy = 1'b1;
196
197 unique case (state_q)
198 StIdle: begin
199 busy = '0;
200 if (dst_req) begin
201 // there's a software issued request for change
202 state_d = StWait;
203 dst_lat_d = 1'b1;
204 end else if (dst_update) begin
205 state_d = StWait;
206 dst_lat_d = 1'b1;
207 end else if (dst_qs_o != dst_qs_i) begin
208 // there's a direct destination update
209 // that was blocked by an ongoing transaction
210 state_d = StWait;
211 dst_lat_q = 1'b1;
212 end
213 end
214
215 StWait: begin
216 dst_hold_req = 1'b1;
217 if (dst_update_ack) begin
218 state_d = StIdle;
219 end
220 end
221
222 default: begin
223 state_d = StIdle;
224 end
225 endcase // unique case (state_q)
226 end // always_comb
227
228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q;
229 logic src_req;
230 prim_sync_reqack u_dst_update_sync (
231 .clk_src_i(clk_dst_i),
232 .rst_src_ni(rst_dst_ni),
233 .clk_dst_i(clk_src_i),
234 .rst_dst_ni(rst_src_ni),
235 .req_chk_i(1'b1),
236 .src_req_i(dst_update_req),
237 .src_ack_o(dst_update_ack),
238 .dst_req_o(src_req),
239 // immediate ack
240 .dst_ack_i(src_req)
241 );
242
243 assign src_ack_o = src_req & (id_q == SelSwReq);
244 assign src_update_o = src_req & (id_q == SelHwReq);
245
246 // once hardware makes an update request, we must eventually see an update pulse
247 `ifdef FPV_ON
248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o),
249 clk_src_i, !rst_src_ni)
250 // TODO: #14913 check if we can add additional sim assertions.
251 `endif
252
253 `ifdef FPV_ON
254 //VCS coverage off
255 // pragma coverage off
256
257 logic async_flag;
258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin
259 if (!rst_dst_ni) begin
260 async_flag <= '0;
261 end else if (src_update_o) begin
262 async_flag <= '0;
263 end else if (dst_update && !dst_req_o && !busy) begin
264 async_flag <= 1'b1;
265 end
266 end
267
268 //VCS coverage on
269 // pragma coverage on
270
271 // once hardware makes an update request, we must eventually see an update pulse
272 // TODO: #14913 check if we can add additional sim assertions.
273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o),
274 clk_src_i, !rst_src_ni)
275 `endif
276
277 end else begin : gen_passthru
278 // when there is no possibility of conflicting HW transactions,
279 // we can assume that dst_qs_i will only ever take on the value
280 // that is directly related to the transaction. As a result,
281 // there is no need to latch further, and the end destination
282 // can in fact be used as the holding register.
283 0/1 ==> assign dst_qs_o = dst_qs_i;
284 1/1 assign dst_req_o = dst_req_i;
Tests: T178 T182 T183
285
286 // since there are no hw transactions, src_update_o is always '0
287 assign src_update_o = '0;
288
289 prim_pulse_sync u_dst_to_src_ack (
290 .clk_src_i(clk_dst_i),
291 .rst_src_ni(rst_dst_ni),
292 .clk_dst_i(clk_src_i),
293 .rst_dst_ni(rst_src_ni),
294 .src_pulse_i(dst_req_i),
295 .dst_pulse_o(src_ack_o)
296 );
297
298 logic unused_sigs;
299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};
Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_2_cdc.u_arb
| Total | Covered | Percent |
Conditions | 3 | 1 | 33.33 |
Logical | 3 | 1 | 33.33 |
Non-Logical | 0 | 0 | |
Event | 0 | 0 | |
LINE 100
EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
------1----- -----------2----------
-1- | -2- | Status | Tests |
0 | 1 | Not Covered | |
1 | 0 | Unreachable | |
1 | 1 | Unreachable | |
LINE 100
SUB-EXPRESSION (dst_qs_o != dst_ds_i)
-----------1----------
-1- | Status | Tests |
0 | Covered | T1,T2,T3 |
1 | Not Covered | |
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_3_cdc.u_arb
| Line No. | Total | Covered | Percent |
TOTAL | | 2 | 2 | 100.00 |
CONT_ASSIGN | 100 | 0 | 0 | |
CONT_ASSIGN | 283 | 1 | 1 | 100.00 |
CONT_ASSIGN | 284 | 1 | 1 | 100.00 |
CONT_ASSIGN | 299 | 0 | 0 | |
99 logic dst_update;
100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i);
101
102 if (DstWrReq) begin : gen_wr_req
103 logic dst_lat_q;
104 logic dst_lat_d;
105 logic dst_update_req;
106 logic dst_update_ack;
107 req_sel_e id_q;
108
109 state_e state_q, state_d;
110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
111 if (!rst_dst_ni) begin
112 state_q <= StIdle;
113 end else begin
114 state_q <= state_d;
115 end
116 end
117
118 logic busy;
119 logic dst_req_q, dst_req;
120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
121 if (!rst_dst_ni) begin
122 dst_req_q <= '0;
123 end else if (dst_req_q && dst_lat_d) begin
124 // if request is held, when the transaction starts,
125 // automatically clear.
126 // dst_lat_d is safe to used here because dst_req_q, if set,
127 // always has priority over other hardware based events.
128 dst_req_q <= '0;
129 end else if (dst_req_i && !dst_req_q && busy) begin
130 // if destination request arrives when a handshake event
131 // is already ongoing, hold on to request and send later
132 dst_req_q <= 1'b1;
133 end
134 end
135 assign dst_req = dst_req_q | dst_req_i;
136
137 // Hold data at the beginning of a transaction
138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
139 if (!rst_dst_ni) begin
140 dst_qs_o <= ResetVal;
141 end else if (dst_lat_d) begin
142 dst_qs_o <= dst_ds_i;
143 end else if (dst_lat_q) begin
144 dst_qs_o <= dst_qs_i;
145 end
146 end
147
148 // Which type of transaction is being ack'd back?
149 // 0 - software initiated request
150 // 1 - hardware initiated request
151 // The id information is used by prim_reg_cdc to disambiguate
152 // simultaneous updates from software and hardware.
153 // See scenario 2 case 3 for an example of how this is handled.
154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
155 if (!rst_dst_ni) begin
156 id_q <= SelSwReq;
157 end else if (dst_update_req && dst_update_ack) begin
158 id_q <= SelSwReq;
159 end else if (dst_req && dst_lat_d) begin
160 id_q <= SelSwReq;
161 end else if (!dst_req && dst_lat_d) begin
162 id_q <= SelHwReq;
163 end else if (dst_lat_q) begin
164 id_q <= SelHwReq;
165 end
166 end
167
168 // if a destination update is received when the system is idle and there is no
169 // software side request, hw update must be selected.
170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq,
171 clk_dst_i, !rst_dst_ni)
172
173 // if hw select was chosen, then it must be the case there was a destination update
174 // indication or there was a difference between the transit register and the
175 // latest incoming value.
176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) ||
177 $past(dst_lat_q, 1),
178 clk_dst_i, !rst_dst_ni)
179
180
181 // send out prim_subreg request only when proceeding
182 // with software request
183 assign dst_req_o = ~busy & dst_req;
184
185 logic dst_hold_req;
186 always_comb begin
187 state_d = state_q;
188 dst_hold_req = '0;
189
190 // depending on when the request is received, we
191 // may latch d or q.
192 dst_lat_q = '0;
193 dst_lat_d = '0;
194
195 busy = 1'b1;
196
197 unique case (state_q)
198 StIdle: begin
199 busy = '0;
200 if (dst_req) begin
201 // there's a software issued request for change
202 state_d = StWait;
203 dst_lat_d = 1'b1;
204 end else if (dst_update) begin
205 state_d = StWait;
206 dst_lat_d = 1'b1;
207 end else if (dst_qs_o != dst_qs_i) begin
208 // there's a direct destination update
209 // that was blocked by an ongoing transaction
210 state_d = StWait;
211 dst_lat_q = 1'b1;
212 end
213 end
214
215 StWait: begin
216 dst_hold_req = 1'b1;
217 if (dst_update_ack) begin
218 state_d = StIdle;
219 end
220 end
221
222 default: begin
223 state_d = StIdle;
224 end
225 endcase // unique case (state_q)
226 end // always_comb
227
228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q;
229 logic src_req;
230 prim_sync_reqack u_dst_update_sync (
231 .clk_src_i(clk_dst_i),
232 .rst_src_ni(rst_dst_ni),
233 .clk_dst_i(clk_src_i),
234 .rst_dst_ni(rst_src_ni),
235 .req_chk_i(1'b1),
236 .src_req_i(dst_update_req),
237 .src_ack_o(dst_update_ack),
238 .dst_req_o(src_req),
239 // immediate ack
240 .dst_ack_i(src_req)
241 );
242
243 assign src_ack_o = src_req & (id_q == SelSwReq);
244 assign src_update_o = src_req & (id_q == SelHwReq);
245
246 // once hardware makes an update request, we must eventually see an update pulse
247 `ifdef FPV_ON
248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o),
249 clk_src_i, !rst_src_ni)
250 // TODO: #14913 check if we can add additional sim assertions.
251 `endif
252
253 `ifdef FPV_ON
254 //VCS coverage off
255 // pragma coverage off
256
257 logic async_flag;
258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin
259 if (!rst_dst_ni) begin
260 async_flag <= '0;
261 end else if (src_update_o) begin
262 async_flag <= '0;
263 end else if (dst_update && !dst_req_o && !busy) begin
264 async_flag <= 1'b1;
265 end
266 end
267
268 //VCS coverage on
269 // pragma coverage on
270
271 // once hardware makes an update request, we must eventually see an update pulse
272 // TODO: #14913 check if we can add additional sim assertions.
273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o),
274 clk_src_i, !rst_src_ni)
275 `endif
276
277 end else begin : gen_passthru
278 // when there is no possibility of conflicting HW transactions,
279 // we can assume that dst_qs_i will only ever take on the value
280 // that is directly related to the transaction. As a result,
281 // there is no need to latch further, and the end destination
282 // can in fact be used as the holding register.
283 1/1 assign dst_qs_o = dst_qs_i;
Tests: T23
284 1/1 assign dst_req_o = dst_req_i;
Tests: T23 T178 T182
285
286 // since there are no hw transactions, src_update_o is always '0
287 assign src_update_o = '0;
288
289 prim_pulse_sync u_dst_to_src_ack (
290 .clk_src_i(clk_dst_i),
291 .rst_src_ni(rst_dst_ni),
292 .clk_dst_i(clk_src_i),
293 .rst_dst_ni(rst_src_ni),
294 .src_pulse_i(dst_req_i),
295 .dst_pulse_o(src_ack_o)
296 );
297
298 logic unused_sigs;
299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};
Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_3_cdc.u_arb
| Total | Covered | Percent |
Conditions | 3 | 3 | 100.00 |
Logical | 3 | 3 | 100.00 |
Non-Logical | 0 | 0 | |
Event | 0 | 0 | |
LINE 100
EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
------1----- -----------2----------
-1- | -2- | Status | Tests |
0 | 1 | Covered | T23 |
1 | 0 | Unreachable | |
1 | 1 | Unreachable | |
LINE 100
SUB-EXPRESSION (dst_qs_o != dst_ds_i)
-----------1----------
-1- | Status | Tests |
0 | Covered | T1,T2,T3 |
1 | Covered | T23 |
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_4_cdc.u_arb
| Line No. | Total | Covered | Percent |
TOTAL | | 2 | 1 | 50.00 |
CONT_ASSIGN | 100 | 0 | 0 | |
CONT_ASSIGN | 283 | 1 | 0 | 0.00 |
CONT_ASSIGN | 284 | 1 | 1 | 100.00 |
CONT_ASSIGN | 299 | 0 | 0 | |
99 logic dst_update;
100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i);
101
102 if (DstWrReq) begin : gen_wr_req
103 logic dst_lat_q;
104 logic dst_lat_d;
105 logic dst_update_req;
106 logic dst_update_ack;
107 req_sel_e id_q;
108
109 state_e state_q, state_d;
110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
111 if (!rst_dst_ni) begin
112 state_q <= StIdle;
113 end else begin
114 state_q <= state_d;
115 end
116 end
117
118 logic busy;
119 logic dst_req_q, dst_req;
120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
121 if (!rst_dst_ni) begin
122 dst_req_q <= '0;
123 end else if (dst_req_q && dst_lat_d) begin
124 // if request is held, when the transaction starts,
125 // automatically clear.
126 // dst_lat_d is safe to used here because dst_req_q, if set,
127 // always has priority over other hardware based events.
128 dst_req_q <= '0;
129 end else if (dst_req_i && !dst_req_q && busy) begin
130 // if destination request arrives when a handshake event
131 // is already ongoing, hold on to request and send later
132 dst_req_q <= 1'b1;
133 end
134 end
135 assign dst_req = dst_req_q | dst_req_i;
136
137 // Hold data at the beginning of a transaction
138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
139 if (!rst_dst_ni) begin
140 dst_qs_o <= ResetVal;
141 end else if (dst_lat_d) begin
142 dst_qs_o <= dst_ds_i;
143 end else if (dst_lat_q) begin
144 dst_qs_o <= dst_qs_i;
145 end
146 end
147
148 // Which type of transaction is being ack'd back?
149 // 0 - software initiated request
150 // 1 - hardware initiated request
151 // The id information is used by prim_reg_cdc to disambiguate
152 // simultaneous updates from software and hardware.
153 // See scenario 2 case 3 for an example of how this is handled.
154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
155 if (!rst_dst_ni) begin
156 id_q <= SelSwReq;
157 end else if (dst_update_req && dst_update_ack) begin
158 id_q <= SelSwReq;
159 end else if (dst_req && dst_lat_d) begin
160 id_q <= SelSwReq;
161 end else if (!dst_req && dst_lat_d) begin
162 id_q <= SelHwReq;
163 end else if (dst_lat_q) begin
164 id_q <= SelHwReq;
165 end
166 end
167
168 // if a destination update is received when the system is idle and there is no
169 // software side request, hw update must be selected.
170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq,
171 clk_dst_i, !rst_dst_ni)
172
173 // if hw select was chosen, then it must be the case there was a destination update
174 // indication or there was a difference between the transit register and the
175 // latest incoming value.
176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) ||
177 $past(dst_lat_q, 1),
178 clk_dst_i, !rst_dst_ni)
179
180
181 // send out prim_subreg request only when proceeding
182 // with software request
183 assign dst_req_o = ~busy & dst_req;
184
185 logic dst_hold_req;
186 always_comb begin
187 state_d = state_q;
188 dst_hold_req = '0;
189
190 // depending on when the request is received, we
191 // may latch d or q.
192 dst_lat_q = '0;
193 dst_lat_d = '0;
194
195 busy = 1'b1;
196
197 unique case (state_q)
198 StIdle: begin
199 busy = '0;
200 if (dst_req) begin
201 // there's a software issued request for change
202 state_d = StWait;
203 dst_lat_d = 1'b1;
204 end else if (dst_update) begin
205 state_d = StWait;
206 dst_lat_d = 1'b1;
207 end else if (dst_qs_o != dst_qs_i) begin
208 // there's a direct destination update
209 // that was blocked by an ongoing transaction
210 state_d = StWait;
211 dst_lat_q = 1'b1;
212 end
213 end
214
215 StWait: begin
216 dst_hold_req = 1'b1;
217 if (dst_update_ack) begin
218 state_d = StIdle;
219 end
220 end
221
222 default: begin
223 state_d = StIdle;
224 end
225 endcase // unique case (state_q)
226 end // always_comb
227
228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q;
229 logic src_req;
230 prim_sync_reqack u_dst_update_sync (
231 .clk_src_i(clk_dst_i),
232 .rst_src_ni(rst_dst_ni),
233 .clk_dst_i(clk_src_i),
234 .rst_dst_ni(rst_src_ni),
235 .req_chk_i(1'b1),
236 .src_req_i(dst_update_req),
237 .src_ack_o(dst_update_ack),
238 .dst_req_o(src_req),
239 // immediate ack
240 .dst_ack_i(src_req)
241 );
242
243 assign src_ack_o = src_req & (id_q == SelSwReq);
244 assign src_update_o = src_req & (id_q == SelHwReq);
245
246 // once hardware makes an update request, we must eventually see an update pulse
247 `ifdef FPV_ON
248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o),
249 clk_src_i, !rst_src_ni)
250 // TODO: #14913 check if we can add additional sim assertions.
251 `endif
252
253 `ifdef FPV_ON
254 //VCS coverage off
255 // pragma coverage off
256
257 logic async_flag;
258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin
259 if (!rst_dst_ni) begin
260 async_flag <= '0;
261 end else if (src_update_o) begin
262 async_flag <= '0;
263 end else if (dst_update && !dst_req_o && !busy) begin
264 async_flag <= 1'b1;
265 end
266 end
267
268 //VCS coverage on
269 // pragma coverage on
270
271 // once hardware makes an update request, we must eventually see an update pulse
272 // TODO: #14913 check if we can add additional sim assertions.
273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o),
274 clk_src_i, !rst_src_ni)
275 `endif
276
277 end else begin : gen_passthru
278 // when there is no possibility of conflicting HW transactions,
279 // we can assume that dst_qs_i will only ever take on the value
280 // that is directly related to the transaction. As a result,
281 // there is no need to latch further, and the end destination
282 // can in fact be used as the holding register.
283 0/1 ==> assign dst_qs_o = dst_qs_i;
284 1/1 assign dst_req_o = dst_req_i;
Tests: T178 T182 T183
285
286 // since there are no hw transactions, src_update_o is always '0
287 assign src_update_o = '0;
288
289 prim_pulse_sync u_dst_to_src_ack (
290 .clk_src_i(clk_dst_i),
291 .rst_src_ni(rst_dst_ni),
292 .clk_dst_i(clk_src_i),
293 .rst_dst_ni(rst_src_ni),
294 .src_pulse_i(dst_req_i),
295 .dst_pulse_o(src_ack_o)
296 );
297
298 logic unused_sigs;
299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};
Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_4_cdc.u_arb
| Total | Covered | Percent |
Conditions | 3 | 1 | 33.33 |
Logical | 3 | 1 | 33.33 |
Non-Logical | 0 | 0 | |
Event | 0 | 0 | |
LINE 100
EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
------1----- -----------2----------
-1- | -2- | Status | Tests |
0 | 1 | Not Covered | |
1 | 0 | Unreachable | |
1 | 1 | Unreachable | |
LINE 100
SUB-EXPRESSION (dst_qs_o != dst_ds_i)
-----------1----------
-1- | Status | Tests |
0 | Covered | T1,T2,T3 |
1 | Not Covered | |
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_5_cdc.u_arb
| Line No. | Total | Covered | Percent |
TOTAL | | 2 | 2 | 100.00 |
CONT_ASSIGN | 100 | 0 | 0 | |
CONT_ASSIGN | 283 | 1 | 1 | 100.00 |
CONT_ASSIGN | 284 | 1 | 1 | 100.00 |
CONT_ASSIGN | 299 | 0 | 0 | |
99 logic dst_update;
100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i);
101
102 if (DstWrReq) begin : gen_wr_req
103 logic dst_lat_q;
104 logic dst_lat_d;
105 logic dst_update_req;
106 logic dst_update_ack;
107 req_sel_e id_q;
108
109 state_e state_q, state_d;
110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
111 if (!rst_dst_ni) begin
112 state_q <= StIdle;
113 end else begin
114 state_q <= state_d;
115 end
116 end
117
118 logic busy;
119 logic dst_req_q, dst_req;
120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
121 if (!rst_dst_ni) begin
122 dst_req_q <= '0;
123 end else if (dst_req_q && dst_lat_d) begin
124 // if request is held, when the transaction starts,
125 // automatically clear.
126 // dst_lat_d is safe to used here because dst_req_q, if set,
127 // always has priority over other hardware based events.
128 dst_req_q <= '0;
129 end else if (dst_req_i && !dst_req_q && busy) begin
130 // if destination request arrives when a handshake event
131 // is already ongoing, hold on to request and send later
132 dst_req_q <= 1'b1;
133 end
134 end
135 assign dst_req = dst_req_q | dst_req_i;
136
137 // Hold data at the beginning of a transaction
138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
139 if (!rst_dst_ni) begin
140 dst_qs_o <= ResetVal;
141 end else if (dst_lat_d) begin
142 dst_qs_o <= dst_ds_i;
143 end else if (dst_lat_q) begin
144 dst_qs_o <= dst_qs_i;
145 end
146 end
147
148 // Which type of transaction is being ack'd back?
149 // 0 - software initiated request
150 // 1 - hardware initiated request
151 // The id information is used by prim_reg_cdc to disambiguate
152 // simultaneous updates from software and hardware.
153 // See scenario 2 case 3 for an example of how this is handled.
154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
155 if (!rst_dst_ni) begin
156 id_q <= SelSwReq;
157 end else if (dst_update_req && dst_update_ack) begin
158 id_q <= SelSwReq;
159 end else if (dst_req && dst_lat_d) begin
160 id_q <= SelSwReq;
161 end else if (!dst_req && dst_lat_d) begin
162 id_q <= SelHwReq;
163 end else if (dst_lat_q) begin
164 id_q <= SelHwReq;
165 end
166 end
167
168 // if a destination update is received when the system is idle and there is no
169 // software side request, hw update must be selected.
170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq,
171 clk_dst_i, !rst_dst_ni)
172
173 // if hw select was chosen, then it must be the case there was a destination update
174 // indication or there was a difference between the transit register and the
175 // latest incoming value.
176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) ||
177 $past(dst_lat_q, 1),
178 clk_dst_i, !rst_dst_ni)
179
180
181 // send out prim_subreg request only when proceeding
182 // with software request
183 assign dst_req_o = ~busy & dst_req;
184
185 logic dst_hold_req;
186 always_comb begin
187 state_d = state_q;
188 dst_hold_req = '0;
189
190 // depending on when the request is received, we
191 // may latch d or q.
192 dst_lat_q = '0;
193 dst_lat_d = '0;
194
195 busy = 1'b1;
196
197 unique case (state_q)
198 StIdle: begin
199 busy = '0;
200 if (dst_req) begin
201 // there's a software issued request for change
202 state_d = StWait;
203 dst_lat_d = 1'b1;
204 end else if (dst_update) begin
205 state_d = StWait;
206 dst_lat_d = 1'b1;
207 end else if (dst_qs_o != dst_qs_i) begin
208 // there's a direct destination update
209 // that was blocked by an ongoing transaction
210 state_d = StWait;
211 dst_lat_q = 1'b1;
212 end
213 end
214
215 StWait: begin
216 dst_hold_req = 1'b1;
217 if (dst_update_ack) begin
218 state_d = StIdle;
219 end
220 end
221
222 default: begin
223 state_d = StIdle;
224 end
225 endcase // unique case (state_q)
226 end // always_comb
227
228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q;
229 logic src_req;
230 prim_sync_reqack u_dst_update_sync (
231 .clk_src_i(clk_dst_i),
232 .rst_src_ni(rst_dst_ni),
233 .clk_dst_i(clk_src_i),
234 .rst_dst_ni(rst_src_ni),
235 .req_chk_i(1'b1),
236 .src_req_i(dst_update_req),
237 .src_ack_o(dst_update_ack),
238 .dst_req_o(src_req),
239 // immediate ack
240 .dst_ack_i(src_req)
241 );
242
243 assign src_ack_o = src_req & (id_q == SelSwReq);
244 assign src_update_o = src_req & (id_q == SelHwReq);
245
246 // once hardware makes an update request, we must eventually see an update pulse
247 `ifdef FPV_ON
248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o),
249 clk_src_i, !rst_src_ni)
250 // TODO: #14913 check if we can add additional sim assertions.
251 `endif
252
253 `ifdef FPV_ON
254 //VCS coverage off
255 // pragma coverage off
256
257 logic async_flag;
258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin
259 if (!rst_dst_ni) begin
260 async_flag <= '0;
261 end else if (src_update_o) begin
262 async_flag <= '0;
263 end else if (dst_update && !dst_req_o && !busy) begin
264 async_flag <= 1'b1;
265 end
266 end
267
268 //VCS coverage on
269 // pragma coverage on
270
271 // once hardware makes an update request, we must eventually see an update pulse
272 // TODO: #14913 check if we can add additional sim assertions.
273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o),
274 clk_src_i, !rst_src_ni)
275 `endif
276
277 end else begin : gen_passthru
278 // when there is no possibility of conflicting HW transactions,
279 // we can assume that dst_qs_i will only ever take on the value
280 // that is directly related to the transaction. As a result,
281 // there is no need to latch further, and the end destination
282 // can in fact be used as the holding register.
283 1/1 assign dst_qs_o = dst_qs_i;
Tests: T72 T73 T74
284 1/1 assign dst_req_o = dst_req_i;
Tests: T72 T73 T74
285
286 // since there are no hw transactions, src_update_o is always '0
287 assign src_update_o = '0;
288
289 prim_pulse_sync u_dst_to_src_ack (
290 .clk_src_i(clk_dst_i),
291 .rst_src_ni(rst_dst_ni),
292 .clk_dst_i(clk_src_i),
293 .rst_dst_ni(rst_src_ni),
294 .src_pulse_i(dst_req_i),
295 .dst_pulse_o(src_ack_o)
296 );
297
298 logic unused_sigs;
299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};
Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_5_cdc.u_arb
| Total | Covered | Percent |
Conditions | 3 | 3 | 100.00 |
Logical | 3 | 3 | 100.00 |
Non-Logical | 0 | 0 | |
Event | 0 | 0 | |
LINE 100
EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
------1----- -----------2----------
-1- | -2- | Status | Tests |
0 | 1 | Covered | T72,T73,T74 |
1 | 0 | Unreachable | |
1 | 1 | Unreachable | |
LINE 100
SUB-EXPRESSION (dst_qs_o != dst_ds_i)
-----------1----------
-1- | Status | Tests |
0 | Covered | T1,T2,T3 |
1 | Covered | T72,T73,T74 |
Line Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_6_cdc.u_arb
| Line No. | Total | Covered | Percent |
TOTAL | | 2 | 2 | 100.00 |
CONT_ASSIGN | 100 | 0 | 0 | |
CONT_ASSIGN | 283 | 1 | 1 | 100.00 |
CONT_ASSIGN | 284 | 1 | 1 | 100.00 |
CONT_ASSIGN | 299 | 0 | 0 | |
99 logic dst_update;
100 unreachable assign dst_update = dst_update_i & (dst_qs_o != dst_ds_i);
101
102 if (DstWrReq) begin : gen_wr_req
103 logic dst_lat_q;
104 logic dst_lat_d;
105 logic dst_update_req;
106 logic dst_update_ack;
107 req_sel_e id_q;
108
109 state_e state_q, state_d;
110 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
111 if (!rst_dst_ni) begin
112 state_q <= StIdle;
113 end else begin
114 state_q <= state_d;
115 end
116 end
117
118 logic busy;
119 logic dst_req_q, dst_req;
120 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
121 if (!rst_dst_ni) begin
122 dst_req_q <= '0;
123 end else if (dst_req_q && dst_lat_d) begin
124 // if request is held, when the transaction starts,
125 // automatically clear.
126 // dst_lat_d is safe to used here because dst_req_q, if set,
127 // always has priority over other hardware based events.
128 dst_req_q <= '0;
129 end else if (dst_req_i && !dst_req_q && busy) begin
130 // if destination request arrives when a handshake event
131 // is already ongoing, hold on to request and send later
132 dst_req_q <= 1'b1;
133 end
134 end
135 assign dst_req = dst_req_q | dst_req_i;
136
137 // Hold data at the beginning of a transaction
138 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
139 if (!rst_dst_ni) begin
140 dst_qs_o <= ResetVal;
141 end else if (dst_lat_d) begin
142 dst_qs_o <= dst_ds_i;
143 end else if (dst_lat_q) begin
144 dst_qs_o <= dst_qs_i;
145 end
146 end
147
148 // Which type of transaction is being ack'd back?
149 // 0 - software initiated request
150 // 1 - hardware initiated request
151 // The id information is used by prim_reg_cdc to disambiguate
152 // simultaneous updates from software and hardware.
153 // See scenario 2 case 3 for an example of how this is handled.
154 always_ff @(posedge clk_dst_i or negedge rst_dst_ni) begin
155 if (!rst_dst_ni) begin
156 id_q <= SelSwReq;
157 end else if (dst_update_req && dst_update_ack) begin
158 id_q <= SelSwReq;
159 end else if (dst_req && dst_lat_d) begin
160 id_q <= SelSwReq;
161 end else if (!dst_req && dst_lat_d) begin
162 id_q <= SelHwReq;
163 end else if (dst_lat_q) begin
164 id_q <= SelHwReq;
165 end
166 end
167
168 // if a destination update is received when the system is idle and there is no
169 // software side request, hw update must be selected.
170 `ASSERT(DstUpdateReqCheck_A, ##1 dst_update & !dst_req & !busy |=> id_q == SelHwReq,
171 clk_dst_i, !rst_dst_ni)
172
173 // if hw select was chosen, then it must be the case there was a destination update
174 // indication or there was a difference between the transit register and the
175 // latest incoming value.
176 `ASSERT(HwIdSelCheck_A, $rose(id_q == SelHwReq) |-> $past(dst_update_i, 1) ||
177 $past(dst_lat_q, 1),
178 clk_dst_i, !rst_dst_ni)
179
180
181 // send out prim_subreg request only when proceeding
182 // with software request
183 assign dst_req_o = ~busy & dst_req;
184
185 logic dst_hold_req;
186 always_comb begin
187 state_d = state_q;
188 dst_hold_req = '0;
189
190 // depending on when the request is received, we
191 // may latch d or q.
192 dst_lat_q = '0;
193 dst_lat_d = '0;
194
195 busy = 1'b1;
196
197 unique case (state_q)
198 StIdle: begin
199 busy = '0;
200 if (dst_req) begin
201 // there's a software issued request for change
202 state_d = StWait;
203 dst_lat_d = 1'b1;
204 end else if (dst_update) begin
205 state_d = StWait;
206 dst_lat_d = 1'b1;
207 end else if (dst_qs_o != dst_qs_i) begin
208 // there's a direct destination update
209 // that was blocked by an ongoing transaction
210 state_d = StWait;
211 dst_lat_q = 1'b1;
212 end
213 end
214
215 StWait: begin
216 dst_hold_req = 1'b1;
217 if (dst_update_ack) begin
218 state_d = StIdle;
219 end
220 end
221
222 default: begin
223 state_d = StIdle;
224 end
225 endcase // unique case (state_q)
226 end // always_comb
227
228 assign dst_update_req = dst_hold_req | dst_lat_d | dst_lat_q;
229 logic src_req;
230 prim_sync_reqack u_dst_update_sync (
231 .clk_src_i(clk_dst_i),
232 .rst_src_ni(rst_dst_ni),
233 .clk_dst_i(clk_src_i),
234 .rst_dst_ni(rst_src_ni),
235 .req_chk_i(1'b1),
236 .src_req_i(dst_update_req),
237 .src_ack_o(dst_update_ack),
238 .dst_req_o(src_req),
239 // immediate ack
240 .dst_ack_i(src_req)
241 );
242
243 assign src_ack_o = src_req & (id_q == SelSwReq);
244 assign src_update_o = src_req & (id_q == SelHwReq);
245
246 // once hardware makes an update request, we must eventually see an update pulse
247 `ifdef FPV_ON
248 `ASSERT(ReqTimeout_A, $rose(id_q == SelHwReq) |-> s_eventually(src_update_o),
249 clk_src_i, !rst_src_ni)
250 // TODO: #14913 check if we can add additional sim assertions.
251 `endif
252
253 `ifdef FPV_ON
254 //VCS coverage off
255 // pragma coverage off
256
257 logic async_flag;
258 always_ff @(posedge clk_dst_i or negedge rst_dst_ni or posedge src_update_o) begin
259 if (!rst_dst_ni) begin
260 async_flag <= '0;
261 end else if (src_update_o) begin
262 async_flag <= '0;
263 end else if (dst_update && !dst_req_o && !busy) begin
264 async_flag <= 1'b1;
265 end
266 end
267
268 //VCS coverage on
269 // pragma coverage on
270
271 // once hardware makes an update request, we must eventually see an update pulse
272 // TODO: #14913 check if we can add additional sim assertions.
273 `ASSERT(UpdateTimeout_A, $rose(async_flag) |-> s_eventually(src_update_o),
274 clk_src_i, !rst_src_ni)
275 `endif
276
277 end else begin : gen_passthru
278 // when there is no possibility of conflicting HW transactions,
279 // we can assume that dst_qs_i will only ever take on the value
280 // that is directly related to the transaction. As a result,
281 // there is no need to latch further, and the end destination
282 // can in fact be used as the holding register.
283 1/1 assign dst_qs_o = dst_qs_i;
Tests: T24
284 1/1 assign dst_req_o = dst_req_i;
Tests: T24 T178 T182
285
286 // since there are no hw transactions, src_update_o is always '0
287 assign src_update_o = '0;
288
289 prim_pulse_sync u_dst_to_src_ack (
290 .clk_src_i(clk_dst_i),
291 .rst_src_ni(rst_dst_ni),
292 .clk_dst_i(clk_src_i),
293 .rst_dst_ni(rst_src_ni),
294 .src_pulse_i(dst_req_i),
295 .dst_pulse_o(src_ack_o)
296 );
297
298 logic unused_sigs;
299 unreachable assign unused_sigs = |{dst_ds_i, dst_update};
Cond Coverage for Instance : tb.dut.top_earlgrey.u_pinmux_aon.u_reg.u_wkup_detector_en_6_cdc.u_arb
| Total | Covered | Percent |
Conditions | 3 | 3 | 100.00 |
Logical | 3 | 3 | 100.00 |
Non-Logical | 0 | 0 | |
Event | 0 | 0 | |
LINE 100
EXPRESSION (dst_update_i & (dst_qs_o != dst_ds_i))
------1----- -----------2----------
-1- | -2- | Status | Tests |
0 | 1 | Covered | T24 |
1 | 0 | Unreachable | |
1 | 1 | Unreachable | |
LINE 100
SUB-EXPRESSION (dst_qs_o != dst_ds_i)
-----------1----------
-1- | Status | Tests |
0 | Covered | T1,T2,T3 |
1 | Covered | T24 |